

Term Rewriting and All That

This is the first English language textbook offering a unified and self-contained introduction
to the field of term rewriting. It covers all the basic material (abstract reduction systems,
termination, confluence, completion, and combination problems), but also some important
and closely connected subjects: universal algebra, unification theory, and Grobner bases. The
main algorithms are presented both informally and as programs in the functional language
Standard ML (an appendix contains a quick and easy introduction to ML). Certain crucial
algorithms like unification and congruence closure are covered in more depth and efficient
Pascal programs are developed. The book contains many examples and over 170 exercises.

This text is also an ideal reference book for professional researchers: results that have been
spread over many conference and journal articles are collected together in a unified notation,
detailed proofs of almost all theorems are provided, and each chapter closes with a guide to
the literature.

Franz Baader has been professor of computer science at the Technical University of Aachen
since 1993. His current research interests include knowledge representation (in particular,
description logics, nonmonotonic logics, and modal logics) and automated deduction. In these
areas he has published more than 50 articles in major journals and conferences.

Tobias Nipkow took up a professorship in the Computer Science Department of the Technical
University in Munich in 1992. His research interests include term rewriting, theorem proving,
and formal program development. In these areas he has published almost 50 articles in major
journals and conferences.

Term Rewriting

and All That

Franz Baader and Tobias Nipkow

5% CAMBRIDGE

& P UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1998

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1998

Printed in the United Kingdom at the University Press, Cambridge
Typeset by the author

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Baader, Franz.
Term rewriting and all that / Franz Baader and Tobias Nipkow.
p. cm.
Includes bibliographical references and index.
ISBN 0 521 45520 O (hc : alk. paper)
1. Rewriting systems (Computer science). I. Nipkow, Tobias, 1958-
IL. Title.
QA267.B314 1998
005.13'1-dc21 97-28286 CIP

ISBN 0 521 45520 0 hardback

Contents

Preface

1 Motivating Examples

2 Abstract Reduction Systems
2.1 Equivalence and reduction

2.2 Well-founded induction

2.3 Proving termination

2.4 Lexicographic orders

2.5 Multiset orders

2.6 Orders in ML

2.7 Proving confluence

2.8 Bibliographic notes

3 Universal Algebra

3.1 Terms, substitutions, and identities
3.2 Algebras, homomorphisms, and congruences
3.3 Free algebras

3.4 Term algebras

3.5 Equational classes

4 Equational Problems

4.1 Deciding ~g

4.2 Term rewriting systems

4.3 Congruence closure

4.4 Congruence closure on graphs

4.5 Syntactic unification

4.6 Unification by transformation

4.7 Unification and term rewriting in ML
4.8 Unification of term graphs

4.9 Bibliographic notes

page ix
1

7

7
13
16
18
21
26
28
33

34
34
44
47
49
49

58
59
61
62
65
71
73
79
82
91

vi

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5

10

10.1
10.2
10.3
10.4
10.5

Contents

Termination

The decision problem
Reduction orders

The interpretation method
Simplification orders
Bibliographic notes

Confluence

The decision problem
Critical pairs
Orthogonality
Beyond orthogonality
Bibliographic notes

Completion

The basic completion procedure
An improved completion procedure
Proof orders

Huet’s completion procedure
Huet’s completion procedure in ML
Bibliographic notes

Grobner Bases and Buchberger’s Algorithm
The ideal membership problem

Polynomial reduction

Grobner bases

Buchberger’s algorithm

Bibliographic notes

Combination Problems
Basic notions

Termination

Confluence

Combining word problems
Bibliographic notes

Equational Unification

Basic definitions and results
Commutative functions

Associative and commutative functions
Boolean rings

Bibliographic notes

93
93
101
104
111
131

134
134
135
145
151
157

158
160
164
172
178
182
184

187
187
189
193
196
198

200
200
202
207
211
222

223
224
230
236
250
262

Contents

11 Extensions

11.1 Rewriting modulo equational theories

11.2 Ordered rewriting

11.3 Conditional identities and conditional rewriting
11.4 Higher-order rewrite systems

11.5 Reduction strategies

11.6 Narrowing

Appendiz I Ordered Sets

Appendiz 2 A Bluffer’s Guide to ML
Bibliography
Indezx

vii

265
265
267
269
270
271
273

276

278
284
297

Preface

Term rewriting is a branch of theoretical computer science which combines
elements of logic, universal algebra, automated theorem proving and func-
tional programming. Its foundation is equational logic. What distinguishes
term rewriting from equational logic is that equations are used as directed
replacement rules, i.e. the left-hand side can be replaced by the right-hand
side, but not vice versa. This constitutes a Turing-complete computational
model which is very close to functional programming. It has applications
in algebra (e.g. Boolean algebra, group theory and ring theory), recursion
theory (what is and is not computable with certain sets of rewrite rules),
software engineering (reasoning about equationally defined data types such
as numbers, lists, sets etc.), and programming languages (especially func-
tional and logic programming). In general, term rewriting applies in any
context where efficient methods for reasoning with equations are required.

To date, most of the term rewriting literature has been published in spe-
cialist conference proceedings (especially Rewriting Techniques and Appli-
cations and Automated Deduction in Springer’s LNCS series) and journals
(e.g. Journal of Symbolic Computation and Journal of Automated Reaso-
ning). In addition, several overview articles provide introductions into the
field, and references to the relevant literature [141, 74, 204]. This is the first
English book devoted to the theory and applications of term rewriting. It
is ambitious in that it tries to serve two masters:

e The researcher, who needs a unified theory that covers, in detail and in a
single volume, material that has previously only been collected in overview
articles, and whose technical details are spread over the literature.

e The teacher or student, who needs a readable textbook in an area where
there is hardly any literature for the non-specialist.

Our choice of material is fairly canonical: abstract reduction systems and

ix

X Preface

universal algebra (the foundation), word problems (the motivation), unifica-
tion (a central algorithm), termination, confluence and completion (the sine
qua non of term rewriting). The inclusion of combination problems is also
uncontroversial, except maybe for the rather technical topic of combining
word problems. Two further topics show our own preferences and are not
strictly core material: equational unification is included because of its sig-
nificance for rewriting based theorem provers, Grobner bases because they
form an essential link between term rewriting and computer algebra.

Prerequisites are minimal: readers who have taken introductory cour-
ses such as discrete mathematics, (linear) algebra, or theoretical computer
science are well equipped for this book. The basic notions of ordered sets
are summarized in an appendix.

How to teach this book

The diagram below shows the dependencies between the different sections
of the book.

2

}

3.2-3.5 < 3.1

}

4.3-4.4 «— 4.1-4.2, 4546 — 4.8

| N\

5 10 — 111

¢

6.4 <— 6.1-63 — 11.2-11.6

¢

7.1 9

<N

7.2-7.4 8

An introductory undergraduate course should cover the trunk of the above
tree. To give the students a more algorithmic understanding of completion,
it is helpful also to introduce Huet’s completion procedure (7.4) without for-
mally justifying its correctness. The course should conclude with 11.2-11.6.
A more advanced introduction at graduate level would also include 4.3-4.4,
4.8, 6.4, 7.2-7.4, 9.1-9.3, and (initial segments of) 10. For a mathemati-

Preface xi

cally oriented audience, 3.2-3.5 is mandatory and 8 contains an excellent
application of rewriting methods in mathematics.

Chapter 2 on abstract reduction systems is the foundation that term
rewriting rests on. Nevertheless we recommend not to teach this chapter
en bloc but to interleave it with the rest of the book. Only Section 2.1 needs
to be covered right at the start. The dependency of the remaining sections
is as follows:

2225 — 5 — 27 — 6.

This groups together the abstract and concrete treatments of termination
(2.2-2.5 and 5) and confluence (2.7 and 6).

Chapter 5 on termination has a special status in the dependency diagram.
It is not the case that all of Chapter 5 is a prerequisite for the remainder
of the book. In fact, almost the opposite is the case: one could read most
of the remainder quite happily, except that one would not be able to follow
particular termination arguments. However, due to the overall importance
of termination, we recommend that students should be exposed at least
to 5.1-5.3 and possibly one of the simplification orders in 5.4. The general
theory of simplification orders should be reserved for a graduate-level course.

A final word of warning. A book also aimed at researchers is written with
a higher level of formality than a pure textbook. In places, the formal rigour
of the book needs to be adjusted to the requirements of the classroom.

The réle of ML

Most of the theory in this book is constructive. Either we explicitly deal
with particular algorithms, e.g. unification, or the proof of some theorem
is essentially an algorithm, e.g. a decision procedure. We find that many
computer science students take more easily to logical formalisms once they
understand how to represent formulae as data structures and how to trans-
form them. Therefore we have tried to accompany every major algorithm in
this book by an implementation. As an implementation language we have
chosen ML: functional languages are closest to our algorithms and ML is one
of its best-known representatives. For those readers not familiar with ML, a
concise summary of the core of the language is provided as an appendix.

It should be emphasized that our ML programs are strictly added value:
they reside in separate sections and are not required for an understanding
of the main text (although we believe that their study enhances this under-
standing).

We should also point out that the programs are intentionally unoptimized.

xii Preface

They are written for clarity rather than efficiency. Nevertheless they cope
well with small to medium sized examples. Their simplicity makes them
an ideal vehicle for further developments, and we encourage our readers to
experiment with them. They are available on the internet at

http://wwwé.informatik.tu-muenchen.de/ nipkow/

Acknowledgments

David Basin, Eric Domenjoud, Harald Ganzinger, Bernhard Gramlich, Hen-
rik Linnestad, Aart Middeldorp, Monica Nesi, Vincent van Oostrom, Larry
Paulson, Manfred Schmidt-Schaufl, Klaus Schulz, Wayne Snyder, Cesare
Tinelli, and Markus Wenzel read individual chapters and commented exten-
sively on them. In particular Aart Middeldorp’s amazing scrutiny uncovered
a number of embarrassing mistakes.

Michael Hanus, Maribel Ferndndez and Femke van Raamsdonk provided
additional comments.

Can A. Albayrak and Volker Braun produced first versions of some of the
figures.

The DFG funded a sabbatical of the second author at Cambridge Uni-
versity Computer Laboratory where Larry Paulson greatly contributed to a
very productive four months.

Alison Woollatt of CUP provided essential TgXpertise. David Tranah,
our very patient editor, suggested the title.

We wish to thank them all.

1

Motivating Examples

Equational reasoning is concerned with a rather restricted class of first-order
languages: the only predicate symbol is equality. It is, however, at the heart
of many problems in mathematics and computer science, which explains
why developing specialized methods and tools for this type of reasoning is
very popular and important. For example, in mathematics one often defines
classes of algebras (such as groups, rings, etc.) by giving defining identities
(which state associativity of the group operation, etc.). In this context, it is
important to know which other identities can be derived from the defining
ones. In algebraic specification, new operations are defined from given ones
by stating characteristic identities that must hold for the defined operations.
As a special case we have functional programs where functions are defined
by recursion equations.

For example, assume that we want to define addition of natural numbers
using the constant 0 and the successor function s. This can be done with
the identitiest

z+0 = =z,
z+s(y) ~ s(z+y).
By applying these identities, we can calculate the sum of 1 (encoded as s(0))
and 2 (encoded as s(s(0))):
5(0) + s(s(0)) = s(s(0) + s(0)) = s(s(s(0)) + 0) = s(s(s(0))).

In this calculation, we have interpreted the identities as rewrite rules that

tell us how a subterm of a given term can be replaced by another term.
This brings us to one of the key notions of this book, namely term rewrit-

ing systems. What do we mean by terms? They are built from variables,

t Throughout this book, we use = for identities to make a clear distinction between the object
level sign for identity and our use of = for equality on the meta-level.

2 1 Motivating Examples

constant symbols, and function symbols. In the above example, + is a
binary function symbol, s is a unary function symbol, 0 is a constant sym-
bol, and z,y are variables. Examples of terms over these symbols are 0, z,
s(s(0)), = + s(0), s(s(s(0)) + 0). In our example calculation, we have used
the identities only from left to right, but in general, identities can be applied
in both directions.

In the following, we give two examples that illustrate some of the key
issues arising in connection with identities and rewrite systems, and which
will be treated in detail in this book. In the first example, the rewrite
rules are intended to be used only in one direction (which is expressed by
writing — instead of). This is an instance of rewriting as a computation
mechanism. In the second, we consider the identities defining groups, which
are intended to be used in both directions. This is an instance of rewriting
as a deduction mechanism.

Symbolic Differentiation

We consider symbolic differentiation of arithmetic expressions that are built
with the operations +, *, the indeterminates X,Y, and the numbers 0, 1.
For example, ((X+X)*Y)+1 is an admissible expression. These expressions
can be viewed as terms that are built from the constant symbols 0, 1, X,
and Y, and the binary function symbols + and *. For the partial derivative
with respect to X, we introduce the additional (unary) function symbol
Dx. The following rules are (some of the) well-known rules for computing
the derivative:

(R3) Dx(u+v) — Dx(u)+ Dx(v),
(R4) Dx(uxv) — (u*xDx(v))+ (Dx(u)*v).

In terms like D x(u+v), the symbols u and v are variables, with the intended
meaning that they can be replaced by arbitrary expressions. Thus, rule
(R3) can be applied to terms having the same pattern as the left-hand side,
i.e. a Dx followed by a +-expression.

Starting with the term Dx (X *X), the rules (R1)—(R4) lead to the possible
reductions depicted in Fig. 1.1. We can use this example to illustrate two
of the most important properties of term rewriting systems:

t These variables should not be confused with the indeterminates X,Y of the arithmetic expres-
sions, which are constant symbols.

Motivating Examples 3

Dx(X *X)

E

(X * Dx (X)) + (Dx (X) * X)

AN\

(X *1) + (Dx(X)* X) (X *Dx(X))+ (1 xX)

N A

X*x1)+(1*xX

—

Fig. 1.1. Symbolic differentiation of the expression Dx (X * X).

Termination: Is it always the case that after finitely many rule applications
we reach an expression to which no more rules apply? Such an
expression is then called a normal form.

For the rules (R1)—(R4) this is the case. It is, however, not com-
pletely trivial to show this because rule (R4) leads to a considerable
increase in the size of the expression.

An example of a non-terminating rule is
u+v— v+ u,

which expresses commutativity of addition. The sequence (X * 1) +
(1xX)— (1xX)+(X*1) - (X*1)+ (1% X) — ... is an example
for an infinite chain of applications of this rule. Of course, non-
termination need not always be caused by a single rule; it could also
result from the interaction of several rules.

Confluence: If there are different ways of applying rules to a given term ¢,
leading to different derived terms t; and t2, can ¢; and t2 be joined,
i.e. can we always find a common term s that can be reached both
from ¢, and from t3 by rule application?

p In Fig. 1.1 this is the case, and more generally, one can prove (but
how?) that (R1)—(R4) are confluent. This shows that the symbolic
differentiation of a given expression always leads to the same deri-

4 1 Motivating Examples

vative (i.e. the term to which no more rules apply), independent of
the strategy for applying rules.
If we add the simplification rule

(R5) vu+0—wu
to (R1)-(R4), we lose the confluence property (see Fig. 1.2).

x(X +0)
Dx(X) Dx(X) + Dx(0)
{ R1 J R1
1 1+ Dx(0)

Fig. 1.2. Dx(X) and Dx(X) + Dx(0) cannot be joined.

In our example, non-confluence of (R1)—(R5) can be overcome by adding the
rule Dx(0) — 0. More generally, one can ask whether this is always possible,
i.e. can we always make a non-confluent system confluent by adding implied
rules (completion of term rewriting systems).

Because of their special form, the rules (R1)—(R4) constitute a functional
program (on the left-hand side, the defined function Dx occurs only at the
very outside). Termination of the rules means that Dy is a total function.
Confluence of the rules means that the result of a computation is indepen-
dent of the evaluation strategy. Confluence of (R1)—(R4) is not a lucky
coincidence. We will prove that all term rewriting systems that constitute
functional programs are confluent.

Group Theory

Let o be a binary function symbol, 7 be a unary function symbol, e be a
constant symbol, and z,y, z be variable symbols. The class of all groups is
defined by the identities

(Gl) (zoy)oz =~ wo(yoz),
(G2) eoxr =~ I,
(G3) i(z)oz =~ e,

Motivating Examples 5

i.e. a set G equipped with a binary operation o, a unary operation ¢, and
containing an element e is a group iff the operations satisfy the identities
(G1)—(G3). Identity (G3) states only that for every group element g, the
element i(g) is a left-inverse of g with respect to the left-unit e. The identities
(G1)—(G3) can be used to show that this left-inverse is also a right-inverse.
In fact, using these identities, the term e can be transformed into the term
zoi(x):

e ZXi(zoi(z))o(xoi(z))
X i(zoi(x))o (zo(eoi(z)))
Ri(z0i(x)) o (z 0 ((i(2) 0 @) 0 i(x)))
Ri(zoi(z)) o ((z o (i) 0 z)) 0 i(x))
Ri(z0i(z)) o ((z 0i(x)) 0) 0 i(x))
Ri(z0i(z)) o ((z 0i(z)) o (z 0 i(x)))
R (i(z 0i(x)) o (z 0 i())) o (z 0 i(a))
= eo(zoi(x))
R zoi(x)

This example illustrates that it is nontrivial to find such derivations, i.e.
to solve the so-called word problem for sets of identities: given a set of
identities E and two terms s and t, is it possible to transform the term s
into the term ¢, using the identities in F as rewrite rules that can be applied
in both directions?

One possible way of approaching this problem is to consider the identities
as uni-directional rewrite rules:

(RG1) (zoy)oz — =zo(yoz),
(RG2) eox — I,
(RG3) i(x)ox — e

The basic idea is that the identities are only applied in the direction that
“simplifies” a given term. One is now looking for normal forms, i.e. terms
to which no more rules apply. In order to decide whether the terms s and ¢
are equivalent (i.e. can be transformed into each other by applying identities
in both directions), we use the uni-directional rewrite rules to reduce s to
a normal form § and ¢ to a normal form ¢. Then we check whether § and
t are syntactically equal. There are, however, two problems that must be
overcome before this method for deciding the word problem can be applied:

e Equivalent terms can have distinct normal forms. In our example, both
zoi(x) and e are normal forms with respect to (RG1)—-(RG3), and we have
shown that they are equivalent. However, the above method for deciding

6 1 Motivating FExamples

the word problem would fail because it would find that the normal forms
of z o i(z) and e are distinct.

e Normal forms need not exist: the process of reducing a term may lead to
an infinite chain of rule applications.

We will see that termination and confluence are the important properties
that ensure existence and uniqueness of normal forms. If a given set of
identities leads to a non-confluent rewrite system, we do not have to give up.
We can again apply the idea of completion to extend the rewrite system to a
confluent one. In the case of groups, a confluent and terminating extension
of (RG1)—(RG3) exists (see Exercise 7.12 on page 184).

2
Abstract Reduction Systems

This chapter is concerned with the abstract treatment of reduction, where
reduction is synonymous with the traversal of some directed graph, the
stepwise execution of some computation, the gradual transformation of some
object (e.g. a term), or any similar step by step activity. Mathematically
this means we are simply talking about binary relations. An abstract
reduction system is a pair (4, —), where the reduction — is a binary
relation on the set A, i.e. — C A x A. Instead of (a,b) € — we write a — b.

The term “reduction” has been chosen because in many applications some-
thing decreases with each reduction step, but cannot decrease forever. Yet
this need not be the case, as witnessed by the reduction0 -1 —2 — ---

Unless noted otherwise, all our discussions take place in the context of
some arbitrary but fixed abstract reduction system (A, —).

2.1 Equivalence and reduction

We can view reduction in two ways: the first is as a directed computation,
which, starting from some point ag, tries to reach a normal form by following
the reduction ap — a3 — ---. This corresponds to the idea of program
evaluation. Or we may consider — merely as a description of <>, where
a < b means that there is a path between a and b where the arrows can be
traversed in both directions, for example, as in ag < a1 — az < as. This
corresponds to the idea of identities which can be used in both directions.
The key question here is to decide if two elements a and b are equivalent,
i.e. if a & b holds. Settling this question by an undirected search along both
— and « is bound to be expensive. Wouldn’t it be nice if we could decide
equivalence by reducing both a and b to their normal forms and testing if
the normal forms are identical? As explained in the first chapter, this idea
is only going to work if reduction terminates and normal forms are unique.

7

8

2 Abstract Reduction Systems

Formally, we talk about termination and confluence of reduction, and the
study of these two notions is one of the central themes of this book.

2.1.1 Basic definitions

In the sequel, we define a great many symbols, not all of which will be put
to immediate use. Therefore you may treat these definitions as a table of
relevant notions which can be consulted when necessary.

Given two relations R C A x B and S C B x C, their composition is

defined by

RoS:={(z,z) e AxC |3y € B. (z,y) € RA(y,2) € S}

Definition 2.1.1 We are particularly interested in composing a reduction
with itself and define the following notions:

2 {(z,z) |z € A} identity

o= Lo (¢ + 1)-fold composition,i > 0

A = Uiso RN transitive closure

X o= JZud reflexive transitive closure

5 = -ud reflexive closure

- {(y,z) | z — y} inverse

— = =5 inverse

- = U« symmetric closure

& o= ()T transitive symmetric closure

& («)* reflexive transitive symmetric closure

Some remarks are in order:

1.

2.

Notations like = and « only work for arrow-like symbols. In the case
of arbitrary relations R C A x A we write R*, R™! etc.
Some of the constructions can also be expressed nicely in terms of paths:

x = y if there is a path of length n from z to y,
x 5 y if there is some finite path from z to y,
z 5 y if there is some finite nonempty path from z to y.

The word closure has a precise meaning: the P closure of R is the least
set with property P which contains R. For example, —, the reflexive
transitive closure of —, is the least reflexive and transitive relation which
contains —. Note that for arbitrary P and R, the P closure of R need
not exist, but in the above cases they always do because reflexivity,
transitivity and symmetry are closed under arbitrary intersections. In

2.1 Equivalence and reduction 9

such cases the P closure of R can be defined directly as the intersection
of all sets with property P which contain R.
4. Tt is easy to show that < is the least equivalence relation containing —-.

Let us add some terminology to this notation:

1. z is reducible iff there is a y such that x — y.

2. z is in normal form (irreducible) iff it is not reducible.

3. y is a normal form of z iff z 5 y and y is in normal form. If z has a
uniquely determined normal form, the latter is denoted by x|.

4. y is a direct successor of z iff z — y.

y is a successor of z iff = 5 Yy

6. x and y are joinable iff there is a z such that z = z <~ y, in which case
we write x | y.

ot

Example 2.1.2
1. Let A:=N-{0,1} and — := {(m,n) | m > n and n divides m}. Then

(a) m is in normal form iff m is prime.
(b) p is a normal form of m iff p is a prime factor of m.
(c) m | n iff m and n are not relatively prime.
(d) & = — because > and “divides” are already transitive.
(e) &=Ax A
2. Let A := {a,b}* (the set of words over the alphabet {a,b}) and — :=
{(ubav, uabv) | u,v € A}. Then

(a) w is in normal form iff w is sorted, i.e. of the form a*b*.

(b) Every w has a unique normal form w|, the result of sorting w.

(c) wy | wy iff wy & wo iff wy and woy contain the same number of as
and bs.

Finally we come to some of the central notions of this book.

Definition 2.1.3 A reduction — is called

Church-Rossert iff t &y =]y (see Fig. 2.1).
confluent iff y1 <25y = y1 lys (see Fig. 2.1).
terminating iff there is no infinite descending chain ag — a3 — - - -
normalizing iff every element has a normal form.

convergent iff it is both confluent and terminating.

Both reductions in Example 2.1.2 terminate, but only the second one is
Church-Rosser and confluent.

t Alonzo Church and J. Barkley Rosser proved that the A-calculus has this property [51].

10 2 Abstract Reduction Systems

Fig. 2.1. Church-Rosser property, confluence and semi-confluence.

Remarks:

1. The diagrams in Fig. 2.1 have a precise meaning and are used throughout
the book in this manner: solid arrows represent universal and dashed
arrows existential quantification; the whole diagram is an implication of
the form VZ. P(T) = Ely Q(:c 7). For example the confluence diagram
becomes Yz, y1, Y. Y1 < x 5 oyp = Jz. y1 > 2 & o

2. Because z | y implies < y, the Church-Rosser property can also be
phrased as an equivalence: ¢ <& y <z | .

3. Any terminating relation is normalizing, but the converse is not true, as
the example in Fig 2.2 shows.

Fig. 2.2. Confluent, normalizing and acyclic but not terminating.

Thus we have come back to our initial motivation: the Church-Rosser
property is exactly what we were looking for, namely the ability to test
equivalence by the search for a common successor. We will now see how it
relates to termination and confluence.

2.1.2 Basic results

It turns out that the Church-Rosser property and confluence coincide. The
fact that any Church-Rosser relation is confluent is almost immediate, and
the reverse implication has a beautiful diagrammatic proof which is shown
in Fig. 2.3. It is based on the observation that any equivalence z <> y can be

2.1 Equivalence and reduction 11

Fig. 2.3. Confluence implies the Church-Rosser property.

written as a series of peaks as in the top of the diagram. Now you can use
confluence to complete the diagram from the top to the bottom. The formal
proof below yields some additional information by involving an intermediate
property:

Definition 2.1.4 A relation — is semi-confluent (Fig. 2.1) iff

YT >y = 1l

Although semi-confluence looks weaker than confluence, it turns out to be
equivalent:

Theorem 2.1.5 The following conditions are equivalent:

1. — has the Church-Rosser property.
2. — is confluent.
3. — is semi-confluent.

Proof We show that the implications 1 = 2 = 3 = 1 hold.

(1 = 2) If — has the Church-Rosser property and y; < z - yo then y; <
y2 and hence, by the Church-Rosser property, y1 | ¥2, i.e. — is confluent.

(2 = 3) Obviously any confluent relation is semi-confluent.

(3 = 1) If — is semi-confluent and & < y then we show x | y, i.e. the
Church-Rosser property, by induction on the length of the chain z <& y. If
& = y, this is trivial. If z & y < 3/ we know « | y by induction hypothesis,
ie. x 5 z <& y for some suitable z. We show z | 3/ by case distinction:

y<—y': z |y follows directly from z | y.
y — y': semi-confluence implies z | ¥ and hence z | ¥/.

The reasoning is displayed graphically in Fig. 2.4. a

12 2 Abstract Reduction Systems

Case y «— v/ Casey — 7/

Fig. 2.4. Semi-confluence implies the Church-Rosser property.

This theorem has some easy consequences:

Corollary 2.1.6 If — is confluent and z < y then

1. 5y if y is in normal form, and
2. x =y if both x and y are in normal form.

Now we know that for confluent relations, two elements are equivalent iff
they are joinable. Of course the test for joinability can be difficult (and even
undecidable) if the relation does not terminate: given two elements which
are not joinable, when should you stop the search for a common successor
in case of an infinite reduction starting from one of the two elements, as in
the following example?

a — a — a — -,
bO—-)bl—)bz——é

It turns out that normalization suffices for determining joinability. To see
this, let us explore the relationship between termination, normalization,
confluence and the uniqueness of normal forms.

Fact 2.1.7 If — is confluent, every element has at most one normal form.

Since every element has at least one normal form if — is normalizing, it
follows that for confluent and normalizing relations every element x has
exactly one normal form which we write x|:

Lemma 2.1.8 If — is normalizing and confluent, every element has a
unique normal form.

Having established under what conditions the notation x| is well-defined,
we immediately obtain our main theorem:

Theorem 2.1.9 If — is confluent and normalizing then x &y < x| =yl.

2.2 Well-founded induction 13

Proof The <«-direction is trivial. Conversely, if z < y then z| < y| and
hence x| = y| by Corollary 2.1.6. |

Thus we have finally arrived at a very goal-directed equivalence test: simply
check if the normal forms of both elements are identical. Provided normal
forms are computable and identity is decidable, equivalence also becomes
decidable.

Many authors prefer to work with termination instead of normalization
and state Theorem 2.1.9 with “convergent” instead of “confluent and norma-
lizing”. Although normalization suffices for finding normal forms, it means
that breadth-first rather than depth-first search may be required, for ex-
ample in Fig. 2.2. For this reason we will also concentrate on termination
rather than normalization in the sequel.

Exercises

2.1 Which closure operations commute? Find a proof or counterexample:

(a) Is the reflexive closure of the transitive closure the same as the
transitive closure of the reflexive closure, i.e. are (i>)= and (=)*
the same and do they coincide with —?

(b) What about the transitive and the symmetric closure? Do (+)*
and (i>) U (i>)_1 coincide?

2.2 Show that — is confluent and normalizing iff every element has a
unique normal form.

2.3 Find a reduction — on N such that — is decidable but it is undecidable
if some n is in normal form.

2.2 Well-founded induction

This section introduces the important proof principle of well-founded in-
duction and shows that it is enjoyed by all terminating relations. As a
motivation, recall the principle of induction for natural numbers: a pro-
perty P(n) holds for all natural numbers n if we can show that P(n) holds
under the (induction) hypothesis that P(m) holds for all m < n. Why is
this proof principle sound? Because there is no infinitely descending chain
mg > mq > --- of natural numbers. The principle of well-founded in-
duction is a generalization of induction from (N,>) to any terminating
reduction system (A, —). Formally, it is expressed by the following infe-

14 2 Abstract Reduction Systems

rence rule:

Vze A (Ve A x5y = P(y) = P(z)

Vz € A. P(x) (WFT)

where P is some property of elements of A. The horizontal line is simply
another symbol for implication.

In words: to prove P(z) for all z, it suffices to prove P(z) under the
assumption that P(y) holds for all successors y of x.

It may come as a bit of a surprise to see an induction schema without
explicit base case. The solution to this puzzle is that the premise of WFI
subsumes the base case. If — is terminating, the “base case” of the induction
consists of showing that P(z) holds for all elements without successor, i.e.
all normal forms. Hence the assumption (Vy € A. x Sy = P(y)) is
trivially true and the premise of WFI degenerates to P(x), just as expected.

WFT is not correct for arbitrary —, but for terminating ones it is:

Theorem 2.2.1 If — terminates then WFI holds.

Proof by contraposition. Assume that WFI does not hold for —, i.e. there
is some P such that the premise of WFI holds but the conclusion does not,
i.e. 7 P(ap) for some ag € A. But then the premise of WFI implies that there
must exist some a; such that ag > a; and —P(a1). By the same argument,
there must exist some as such that aq & az and —P(a2). Hence there is an
infinite chain ag & ai A as & .. -, i.e. — does not terminate. O

As a first application of WFI, we can prove the converse of this theorem:
Theorem 2.2.2 If WFI holds, then — terminates.

Proof by WFI where P(z) := “there is no infinite chain starting from z”.
The induction step is simple: if there is no infinite chain starting from any
successor of z, then there is no infinite chain starting from « either. Hence
the premise of WFI holds and we can conclude that P(x) holds for all z, i.e.
— terminates. O

A few words on terminology. Terminating relations are usually called well-
founded in the mathematical literature. Hence the term “well-founded
induction”. In the computer science literature the terms Noetheriant and
Noetherian induction are sometimes used instead. Strictly speaking, a
reduction system (A, —) is well-founded if every nonempty B C A has a
minimal element, i.e. some b € B such that b — b for no ¥/ € B. With

t In honour of the mathematician Emmy Noether.

2.2 Well-founded induction 15

the help of the Axiom of Choice it can be shown that well-foundedness and
termination are equivalent.

We will now use well-founded induction to study some further properties
of reductions which are related to termination.

Definition 2.2.3 A relation — is called

finitely branching if each element has only finitely many direct successors,
globally finite if each element has only finitely many successors,
acyclic if there is no element a such that a % a.

Note that — is globally finite iff % is finitely branching.

Lemma 2.2.4 A finitely branching relation is globally finite if it is termi-
nating.

Proof Let — be finitely branching and terminating. We use well-founded
induction to prove that for every element the set of all its successors is finite.
Since this is true for all its direct successors (by induction hypothesis), of
which there are only finitely many, it is also true for the element itself. [

It is not true that a finitely branching relation is terminating if it is glo-
bally finite. The reason is cycles. However, we have the following weaker
implication:

Lemma 2.2.5 Any acyclic relation is terminating if it is globally finite.

The combination of the last two lemmas says that a finitely branching and
acyclic relation is globally finite iff it is terminating. The special case of an
acyclic relation induced by a tree is known as Konig’s Lemma:

A finitely branching tree is infinite iff it contains an infinite path.

Exercises

2.4 Show that 5 is terminating iff — is.

2.5 Show that - is a strict partial order iff — is acyclic.

2.6 A relation — is called bounded iff for each element the length of all
paths starting from it is bounded: Vz. In. fy. z 5 y.

(a) Is every terminating relation bounded?

(b) Show that a finitely branching relation terminates iff it is boun-
ded.

2.7 Prove Lemma 2.2.5.

16 2 Abstract Reduction Systems

2.3 Proving termination

The importance of termination hardly needs emphasizing: it is essential not
just for programmers but also for theoreticians, as the previous sections,
in particular the connection with well-founded induction, have shown. We
will now examine a number of constructions for proving termination, a hard
(because undecidable) task, as computer scientists well know. These con-
structions are on the level of relations and are applicable to termination
proofs of programs as well as to purely mathematical questions, for example
from the realm of group theory.

In connection with termination, it frequently pays to work with transitive
relations or even partial orders. One reason is that there is a vast body
of mathematical literature on partial orders. Another is that some of our
constructions (e.g. the multiset order) are simpler for partial orders than for
arbitrary relations. Fortunately, the transition to partial orders is without
loss of generality: % terminates iff — does, in which case - is a strict order
(Exercises 2.4 and 2.5).

The most basic method for proving termination of some (A,—) is to
embed it into another abstract reduction system (B, >) which is known to
terminate. This requires a monotone mapping ¢ : A — B, where monotone
means that x — 2’ implies ¢(z) > ¢(z/). Now — terminates because
an infinite chain r9p — z; — --- would induce an infinite chain p(zy) >
¢(x1) > ---. The mapping ¢ is often called a measure function and the
whole construction is known as the inverse image construction (because
— C o7 1(>) ={(z,2) | (z) > (a')}). Note that if ¢ is the identity, this
yields that any subset of a terminating relation is terminating.

Example 2.3.1 The most popular choice for termination proofs is an em-
bedding into (N, >), which is known to terminate. For strings, i.e. A := X*
for some set X, there are two natural choices:

1. Length. ¢ is defined by ¢(w) := |w|. This proves termination of all
length-decreasing reductions like uabbv —1 waav, where u,v € A are
arbitrary and a,b € X are fixed.

2. Letters. For each a € X define ¢, (w) := “the number of occurrences of
a in w”. This can cope with reductions like uav —9 vbu where u,v € A
are arbitrary and a,b € X, a # b, are fixed.

How about —1U—97 We claim it also terminates, in which case Lemma 2.3.3
below tells us that there exists a measure function into N. Can you find one?

Many program termination proofs follow the same schema by showing that

2.8 Proving termination 17

every computation step (e.g. loop iteration or recursive call) decreases the
value of some expression ¢(Z) in terms of the program variables T.

Example 2.3.2 Assume all variables in the following program range over
natural numbers:

while ub > Ib+1 do
begin 7 := (ub+1b) div 2;

if ® then ub := r else Ib :=r
end

Termination is independent of the test ® (provided ® terminates and has no
side effect) and can be proved with the measure function ¢ (ub, Ib) := ub—Ilb
which decreases with every loop iteration.

The popularity of measure functions into N is in part explained by the
following completeness result:

Lemma 2.3.3 A finitely branching reduction terminates iff there is a mo-
notone embedding into (N, >).

Proof The «-direction follows from the soundness of the measure function
approach. For the other direction, let — be a terminating and finitely
branching reduction. Define ¢(x) as the number of successors of z which,
by Lemma 2.2.4, must be finite. Since — is terminating and hence acyclic,
z — z’ implies that z’ has strictly fewer successors than z. Alternatively,
©(z) can be defined as the length of the longest reduction starting from z.
Since — terminates, Exercise 2.6 implies that ¢(x) is well-defined. O

The restriction to finitely branching relations is necessary, as the following
example shows.

Example 2.3.4 Let A := N x N and let — be defined by the two rules
(i+1,4) — (i,k) and (¢, j+1) — (3,7) for all ¢, j, k > 0. This reduction is not
finitely branching because the value of k in the first rule is not constrained by
the left-hand side. Termination of — can be shown by a simple lexicographic
construction (see Section 2.4). Yet there is no monotone function ¢ from
(N x N,—) into (N,>). For if there were such a function ¢, observe that
monotonicity implies k& := ¢(1,1) > ¢(0,k) > ¢(0,k —1) > --- > ¢(0,0).
This is a contradiction because there are only k natural numbers below &
and yet the chain ¢(0,k) > --- > ¢(0,0) has length £ + 1.

Even in the context of finitely branching reductions, an embedding into N
can be tricky to find.

18 2 Abstract Reduction Systems

Example 2.3.5 Let A = NxN and define the reduction by (3,j+1) — (4, 5)
and (¢ + 1,7) — (4,7). This reduction terminates at (0,0) for every start
point. It is also finitely branching. Hence there is a measure function into
N. In this particular case ¢(i, j) = 2+ does the job, but it takes a moment
to find this function and prove that it is monotone.

We will now discuss how to get around the above problems with measure
functions into N by building complex orders from simpler ones using fixed
constructions which preserve termination.

Exercises

2.8 Find a measure function into N which proves termination of — in
Example 2.1.2, part 2.

2.9 Find a measure function into N which proves termination of —1U—9
in Example 2.3.1.

2.4 Lexicographic orders

Given two strict orders (A4,>4) and (B, >p), the lexicographic product
>axp on A X B is defined by

(x,y) >axB (@',Y) & (x>a2) V(=2 Ay >pY).

If A and B are obvious from the context we write > instead of >x«pB.
Sometimes we also write >4 Xjex >B.
The following property is routine to prove:

Lemma 2.4.1 The lexicographic product of two strict orders is again a strict
order.

More interestingly we have

Theorem 2.4.2 The lexicographic product of two terminating relations is
again terminating.

Proof by contradiction. Assume there is an infinitely descending chain
(ag,bo) > (a1,b1) > ---. Thisimplies ag >4 a1 >4 ---. Since >4 terminates,
this chain cannot contain an infinite number of strict steps a; >4 a;+1.
Hence there is a k such that a; = a;41 for all ¢ > k. But this implies
b; >p biy1 for all 4 > k, which contradicts the termination of >p. O

This theorem proves termination of — on N x N in Examples 2.3.4 and
2.3.5: (i,5) — (¢, is defined such that (7,7) is lexicographically greater

2.4 Lezicographic orders 19

than (¢/,j'), i.e. — is a subset of the terminating relation >yxy. It also
proves termination of —1 U —9 in Example 2.3.1: —1 decreases the length
whereas —9 leaves the length invariant but decreases the number of as.

Lexicographic products are essential in building up more complex orders
from simpler ones. By iteration, we can form lexicographic products over
any number of strict orders (A;,>;), i = 1,...,n: >1._n, where n > 1, is
the lexicographic product of >; and >3 ,. Unwinding the recursion and
writing > instead of >1._, we get

(Z1,--,Zn) > (Y1,---,Yn) = Tk <n. (Vi<k.zi= Yi) N Tk >k Yk- (2.1)

If all (A;, >;) are the same we write >7. . for the n-fold lexicographic product.

The above results for the binary lexicographic product carry over to n-fold
products: > is again a strict order and it terminates if all the >; terminate.
The proofs are by induction on n.

Instead of tuples of fixed length, we can also consider strings of arbitrary
but finite length: given a strict order (4, >), the lexicographic order >},
on A* is defined as

Ui v & (Jul >)V (lul = o Au>ig v)

lex

where |w| is the length of w and >y:al is the order on Al”l defined in (2.1)
above. More concisely, we can define >, as the lexicographic product of
>ien and ey >tp, Where u >ien v 1< |u| > |v]. Since A’ and A7 are
disjoint if 7 # j, the second component of this product is a union of orders
over disjoint sets. Since such unions (this is easy to see) and lexicographic

products (as shown above) preserve strict orders and termination, we have

Lemma 2.4.3 If > is a strict order, so is >},.. If > terminates, so does
>7€1§'

Despite its name, >, is not the order used in dictionaries. The latter does
not terminate: a >gict 0 >gict AGA >gict - - -

Yet another interesting variation on lexicographic orders compares strings
from left to right as follows: w; > e, w2 if we is a proper prefix of wy or if
w1 = uav, wy = ubw and a > b, where > is the underlying strict order. For
example, if a > b, then aaaa >pe; aaa >re, abba. Unfortunately, >, need
not terminate either, even if > does (exercise!). Nevertheless, >, can be
a useful component in more complicated orders.

Lemma 2.4.4 If > is a strict order, so is >[ez-

The proof, a simple case analysis, is left as an exercise.

20 2 Abstract Reduction Systems

A final word of warning about our definition of the lexicographic pro-
duct. Although we assume the component relations to be strict orders, the
definition works just as well for arbitrary relations. In fact, Theorem 2.4.2
depends on termination only. Nevertheless, the lexicographic product of two
arbitrary relations may not be what you expect. For example >y Xjer >N
relates all (i,7) and (i,k), simply because ¢ >y ¢. Hence you should not
use Xje, directly with reflexive relations. Given two partial orders >4 and
> B, their lexicographic product should be defined as the reflexive closure of
>4 Xiez >p- (Remember that the strict part of a partial order > is written
>.) Of course this can be written more succinctly, if slightly ambiguously,
as > axp. Alternatively, we can define the lexicographic product directly for
partial orders:

(z,y) >axp (@,Y) & (>a2)V(e=2" Ay>pY).

It is easy to show that these two definitions of > 4« p are equivalent and that
> AxB Is a partial order if >4 and >p are partial orders (exercise!).

Exercises

2.10 Prove Theorem 2.4.2 by well-founded induction.

2.11 Show that the following process always terminates. There is a box full
of black and white balls. Each step consists of removing an arbitrary
ball from the box. If it happens to be a black ball, one also adds an
arbitrary (but finite) number of white balls to the box.

2.12 Show that vy >}, vo implies uviw >}, uvow.

2.13 Show that >« p is linear if both >4 and >p are.

2.14 Show that >, is linear if > is.

2.15 Why do the following two programs terminate, provided all variables
range over positive natural numbers?

while m # n do
ifm > nthenm := m—n elsen :=n—m

while m # n do
if m > n then m :
else begin h := m; m :=n; n := h end

I
3
|
S

What if the variables range over positive rational numbers?

2.5 Multiset orders 21

2.16 Show that the evaluation of the following recursively defined function,
also known as Ackermann’s function, terminates for all m,n € N:

ack(0,n) = n+1,
ack(m+1,0) = ack(m,1),
ack(m+1,n+1) = ack(m,ack(m+ 1,n)).

2.17 Does termination of > imply termination of >[¢.7

2.18 Prove Lemma 2.4.4.

2.19 Show that >p, is linear if > is.

2.20 Formalize the order used in dictionaries.

2.21 The lexicographic product of two quasi-orders 24 and > p is defined
as follows:

(z,y) 2 (@) & z>a2' V(e ~ad ANy 2B Y).

(a) Show that 2 is a quasi-order if both 24 and 2 p are.
(b) Show that >, the strict part of 2, terminates if >4 and >p do.

2.5 Multiset orders

Consider the following reduction on N*: u(i+1)v — wiiv for all u,v € N* and
i € N. It turns out that — terminates, and because it is finitely branching,
there should also exist a measure function into N. If you want to spare
yourself the torture of finding that function, you should read on.

One of the most powerful ways of building terminating orders is multisets.
They are usually defined as “sets with repeated elements”, which the purist
will find a contradiction in terms, but which conveys their nature quite well.
Examples are {a, a,b} and {a,b, a}, which are identical, and {a, b, b}, which
is distinct from them. Of course, we can also be more formal:

Definition 2.5.1 A multiset M over a set A is a function M : A — N.
Intuitively, M (z) is the number of copies of z € A in M.

A multiset M is finite if there are only finitely many x such that M (z) >
0. Let M(A) denote the set of all finite multisets over A.

Although multisets can be infinite, and much of the theory works for infinite
multisets, the bit that is crucial for us fails: termination. Therefore all our
multisets are assumed to be finite unless stated otherwise.

We use standard set notation like {a, a, b} as an abbreviation of the func-
tion {a — 2,b— 1,c+ 0} over the base set A = {a,b, c}. It will be obvious
from the context if we refer to a set or a multiset.

22 2 Abstract Reduction Systems

Most set operations are easily generalized to multisets by replacing the
underlying Boolean operations by similar ones on N.

Definition 2.5.2 Some basic operations and relations on M(A) are:

Element : x € M & M(x) > 0.
Inclusion : M C N :& Vr e A. M(z) < N(z).
Union : (M UN)(z) := M(z) + N(z).
Difference : (M — N)(z) := M(z) ~ N(z)
where m = n is m —n if m > n and is 0 otherwise.

Some typical examples: @ C {a,a} C {a,a,a}, {a,b} U {b,a} = {a,a,b,b}
and {a,b,b,b} —{a,a,b,c} = {b,b}.

Now we come to the central concept of this section, an order on multisets:
the smaller multiset is obtained from the larger one by removing a nonempty
subset X and adding only elements which are smaller than some element in
X.

Definition 2.5.3 Given a strict order > on a set A, we define the corres-
ponding multiset order >,,,; on M(A) as follows:

M > N iff there exist X, Y € M(A) such that
0#X C M and
N=(M-X)UY and
VyeY dre X.z > y.

For example, {5,3,1,1} >, {4,3,3,1} is verified by replacing X = {5,1}
by Y = {4,3}. Note that X and Y are not uniquely determined: X =
{5,3,1,1} and Y = {4, 3, 3,1} work just as well.

Sometimes it can be useful to realize that M >,,,; N holds iff you can get
from M to N by carrying out the following procedure one or more times:
remove an element x and add a finite number of elements, all of which are
smaller than z (see Exercise 2.22).

On finite multisets, the multiset order is again a strict order:

Lemma 2.5.4 If > is a strict order, so is >pmuy-

Proof Irreflexivity: if M >, M, there are X and Y such that X C M,
M=(M-X)UY,ie. X =Y, and Vy € Y.3z € X. z > y, which implies
Vy € X.3r € X. x > y. Since > is a strict order this implies that X is
infinite, a contradiction.

Transitivity is more involved. If My > Mz >mu Ms then My =
(M1 —X1)UY1 and M3 = (M2 — X3) UY>, for multisets X; and Y; satisfying
the appropriate conditions in the definition of >,,,;. We now claim that

2.5 Multiset orders 23

X=X3U(X2—-Y1)and Y := (Yl — X3) UYs prove My >y, M3. Let us
look at the required conditions in turn.

e X # 0 is implied by X; # 0.

o Xy C My = (M;—X;)UY; implies X2 —Y7 C M7 — X and hence, because
X1 ng,X=X1U(X2—Y1) C M.

e We need to show that M3 = (M; — X) UY =: Mj, which follows if
we can show M3(a) = Mj(a) for an arbitrary a € A. We have Mj(a) =
(Mi(a) = (X1(a)+(X2(a) = Y1(a))))+((Y1(a) = X2(a))+Y2(a)). Because
X C M, the first “~” in this expression can be replaced by an ordinary
minus “—”, which (after some arithmetic rearrangement) yields Mj5(a) =
(Mi(a)—X1(a))+((Y1(a) = X2(a))—(X2(a) = Y1(a)))+Y2(a). Obviously,
(m = n) — (n = m) = m — n, and thus we obtain Mj(a) = ((Mi(a) —
X1(a)) +Y1(a)) — X2(a)) + Ya(a) = (M2(a) — X2(a)) + Ya(a) = Ms(a).

e ToproveVyeY. Iz e X.z > yletye Y. If y € Y1, M1 > Mo implies
x>y for some r € X1 C X. If y € Yo, Mo > M3 implies z > y for
some x € Xg. If z € X9 — Y7 C X, we are done. Otherwise z € Y3, in
which case My >, M2 implies 1 > x for some x; € X; C X and hence
1 > y by transitivity of > on A. O

The really important nontrivial property of >, is

Theorem 2.5.5 The multiset order >, is terminating iff > 1is.

Proof If > does not terminate, there is an infinite chain ag > a; > - - - which
induces an infinite chain {ap} >mu {a1} >mu - - - of multisets. Hence >,
does not terminate either.

If > terminates, we show by contradiction that >,,,; terminates. Assume
there is an infinite chain My >, M1 >mu - - -~ We can then build a finitely
branching but infinite tree where the nodes are labelled with elements of
A such that along each path the labels decrease w.r.t. >. Using Ko&nig's
Lemma, it follows that this tree must have an infinite branch, which yields
an infinitely descending sequence in A, the desired contradiction. It remains
to be seen how to construct this tree.

Let L be an arbitrary element not in A, let A; := AU{L}, and extend
> by defining a > L for all a € A. Obviously (A, >) is still terminating.
Now we grow the following tree whose nodes are labelled with elements of
Aj. At stage ¢ of the construction the non-1 leaf nodes form the multiset
M;. The initial tree has a root with an arbitrary label and a successor node
for each element of My, e.g. My = {5,3,1,1}:

24 2 Abstract Reduction Systems

Since My > M, there are finite multisets X and Y with the properties
stated in the definition of >,,,;. For every y € Y add a new node labelled y
and make it the child of some leaf node labelled x where x > y. By definition
of >, such an z must exist in X C My and hence x is among the current
leaf nodes. In addition we add a son labelled L to each x € X. This ensures
that even if Y is empty, the tree has grown. Example: M; = {4,3,3,1},
X ={5,1} and Y = {4,3}:

@,
® ® O O
OO0 D

This process can be continued for Ms, Mg, Thus we are constructing a
finitely branching (the M; are finite) but infinite (for each M; at least one
node is added) tree. Ignoring the root node, the labels on each path are
strictly decreasing by construction. a

Note that the proof does not require > to be a strict order but works for
any relation.

It is now easy to see that the reduction u(i + 1)v — wiiv considered at
the beginning of this section terminates: the mapping ¢ : N* — M(N)
defined by ¢(41 . ..4p) := {i1,...,in} is obviously monotone (p(u(i+ 1)v) =
P(u)U{i+1}Up(v) >mu o(u) U{i, i} Up(v) = p(uiiv)) and >p, on M(N)
terminates because > on N does.

The above definition of >,,,; is quite intuitive but also a little cumbersome
because of its many quantifiers and conditions. Therefore the following
alternative characterization is useful:

Lemma 2.5.6 If > is a strict order and M,N € M(A), then
M>uN & M#FNAVRneN-M.Ime M —-N. m>n.

Proof For the =-direction, assume M >,,,; N, in which case there are X
and Y as in the definition of >,,,;. M # N follows from irreflexivity of
>mul- For the second conjunct, let yy e N - M = (M - X)UY)-M =
(MUY)-X)—-M=(MUY)-M)— X =Y — X. Hence there is a
y2 € X such that yo > y;. Either yp e X - Y = (M - (M -X))-Y =

2.5 Multiset orders 25

—((M -=X)UY) =M — N, in which case we are done, or yo € X NY
(where (X NY)(z) := min(X(z),Y (z))), in which case there is a y3 € X
such that y3 > y2. Because our multisets are finite and > is a strict order,
there is no infinite ascending chain y; < yo < y3 < ---in X NY, i.e. this
process must always terminate with some y, € X —Y = M — N. Transitivity
yields y, > y1.

The <=-direction is left as an exefrcise. O

It is worth noting that if > is linear, then M >,,.,; N can be computed quite
efficiently: sort M and N into descending order (w.r.t. >) and compare the
resulting lists lexicographically w.r.t. >re.. Let M be the sorted version of
M. Ttis easy to see that M > Lex N implies M >,,,; N: either Ni is a proper
preﬁx of M in which case M D N and hence M >, N; or M = umu,
N = unw such that m > n, in which case m is larger than all elements in
w, which again implies M >,,,; N. Conversely, if M PlLex N then either
M=Nor N >, M (Exercise 2.19) and thus N >, M; since >,y is
strict, this implies M %, N in both cases. Thus we conclude that

M>nuN & M>r.. N. (2.2)

Let us briefly look at the multiset extension of partial orders. As in the
lexicographic case, we have to be a bit careful. If we simply replace > by >
we end up with {1} >, {1,1}, which is not desirable. Instead, >, the
multiset extension of a partial order >, is defined as follows:

M>nu N & M >puNVM=N.

Given a quasi-order (A4, 2), we define its multiset extension via the induced
partial order > on A/.:

M>N :& M/ >mu N/
where {a1,...,ax}/~ :={[ai]~, - .., [ar]~}-

Exercises
2.22 Given a strict order (A, >), define the following single-step relation
on M(A):
M> N & Jze MY eM(A). N=M-{z})UY A
VyeY. x>y.
Show that >,,,; is the same as the transitive closure of >mul (Hint:

show that each relation is contained in the other using appropriate
inductions.) Conclude that >, is transitive.

26 2 Abstract Reduction Systems

2.23 Show that X and Y in the definition of >,,,; can always be chosen
such that they are disjoint.

2.24 Give a counterexample to Lemma 2.5.4 for infinite multisets. Show
that Lemma 2.5.4 also holds for infinite multisets provided there is no
infinitely ascending chain xg < 1 < ---.

2.25 Prove the <-direction of Lemma 2.5.6.

2.26 Show that if > is a partial order, so is >y, and that 2, is a
quasi-order if 2> is one.

2.6 Orders in ML

How should we implement strict/partial orders in general? The obvious
implementation as a function ord: 7 * 7 => bool has its problems:

o If ord(z,y) implements x > y, we cannot recover z > y by writing
ord(x,y) orelse x = y because in general we cannot assume that the
mathematical equality = on the base set A coincides with the program-
ming language equality = on the type 7 used to implement A. For example,
if sets are implemented by lists, we do not have [1,2] = [2,1] although
they are equal as sets.

o If ord(z,y) implements z > y, we can compute z > y as ord(z,y)
andalso not(ord(y,x)). This is mathematically correct but inefficient
because of the two calls to ord. The performance penalty is exponential
in the depth of the nesting of orders.

e Implementing both > and > is likely to duplicate much of the code.

To overcome these problems we introduce
datatype order = GR | EQ | NGE;

which represents the three outcomes >, = and 2. We say that a function
ord computes a strict/partial order >/> if

GR ifz>y,
ord(z,y) =< EQ ifz=y,
NGE ifz ¥y.

Note that by = = y we mean equality on the abstract, not the implementa-
tion level. The latter is z = y, which is too weak, as the set/list example
demonstrates: on the implementation level, a partial order may turn into a
quasi-order. The purpose of EQ instead of = is to hide that fact. On the
other hand, we may even start with a quasi-order 2, in which case GR, EQ
and NGE represent >, ~ and 2.

2.6 Orders in ML 27

2.6.1 Lexicographic orders

Unsurprisingly, x is implemented by * and * by list. The corresponding
constructions >4xp and >,, are equally straightforward. Note that A"
should be implemented not as an n-fold product but as a list, in which case

>7 . has the following simple recursive implementation:

(x lex: (o * B => order) -> a list *x B list => order *)
fun lex ord ([1,[1) = EQ
| lex ord (z::zs,y::ys) = case ord(z,y) of
GR => GR
| EQ => lex ord (zs,ys)
| NGE => NGE;

If ord implements > then lez ord implements >7. for any n. Note that
lex ord is undefined if the two argument lists have different lengths.

The type of lez is slightly more general than one might have expected
because ord could potentially compare elements of two different types. This
kind of unexpected generalization is a frequent ML phenomenon which we
will not comment on in the future.

2.6.2 Multiset orders

We represent finite multisets over a type 7 by 7 list, which leads to very
simple algorithms. For example, U becomes @. Multiset difference, however,
needs to be parameterized by the order on 7 because we need to compare
elements for EQuality on the abstract level:

(* reml: (a * B => bool) -> « list => B -> « list *)

fun rem1 ord ([1, _) 0

| rem1 ord (x::zs, y) = if ord(z,y) = EQ then zs
else z :: (reml ord (zs, ¥));

(*x mdiff: (a * B => bool) -> a list => B list => « list *)
fun mdiff ord (zs, [1) = zs
| mdiff ord (zs, y::ys) = mdiff ord (rem1 ord (zs,y), ys);

The starting point for an implementation of >,,,; is not its actual defini-
tion, which is marred by existential quantifiers, but Lemma 2.5.6 which can
be expressed in ML almost verbatim:

(* mul: (a * o -> order) -> a list * a list -> order *)
fun mul ord (ms,ns) =
let val nms = mdiff ord (ns,ms)
val mns = mdiff ord (ms,ns)
in if null(nms) andalso null(mns) then EQ
else if forall (fn n => exists (fn m => ord(m,n)=GR) mns) nms
then GR else NGE
end;

28 2 Abstract Reduction Systems

The “almost” is a consequence of the fact that we cannot use = to com-
pare ms and ns. The test null(nms) andalso null(mns) is justified by the
equivalence M = N < (M — N) =0 = (N — M) on the multiset level.

Assuming that the running time of ord is constant, mdiff ord (ms,ns)
has time complexity O(mn), where m and n are the lengths of ms and ns.
This is inherited by mul ord (ms,ns) because O(mn + nm + |m — n|jn —
m|) = O(mn). If ord is a linear order, condition (2.2) above allows an
implementation of mul which runs in time O(m +n), provided multisets are
represented by sorted lists.

Exercises

2.27 Implement >r.,.

2.28 Implement multisets as association lists which pair every element with
the number of times it occurs in the multiset. Update the code for
mdiff and mul accordingly.

2.7 Proving confluence

Proving confluence can be hard work because one has to consider forks
Y1 < & = yy of arbitrary length. We will now look at ways of localizing the
confluence test to single-step forks y; < = — ys.

Definition 2.7.1 A relation — is locally confluent (Fig. 2.5) iff

Y1 =T — Y2 = Y1y

Fig. 2.5. Local confluence, strong confluence, and the diamond property.

Local confluence is strictly weaker than confluence. A simple example is
shown in Fig. 2.6 on the left: both local forks a <~ 0 — 1and 0 < 1 — bcan
be closed, yet the reduction is not confluent. One might suspect that the
cycle between 0 and 1 is responsible, but the second example in Fig. 2.6 (only
an initial segment of the infinite graph generated by 2n — a, 2n+1 — b
and n — n + 1, is shown) proves that this is not the case: even for acyclic

2.7 Proving confluence 29

Fig. 2.6. Local confluence does not imply confluence.

relations, local confluence does not imply confluence. Both example are
nonterminating. This is a consequence of Newman’s Lemma [185]:

Lemma 2.7.2 A terminating relation is confluent if it is locally confluent.

Proof Let — be terminating and locally confluent. We show confluence by
well-founded induction using the predicate

Plz) = Vy,z.y&zcSz=>y| 2

Obviously — is confluent if P(z) holds for all z. Well-founded induction
requires us to show P(z) under the assumption P(t) for all ¢t such that
z 5 t. To prove P(x), we analyse the fork y &z 5 2. If z =y or z = 2,
y | z is immediate. Otherwise we have 2 — y; — y and ¢ — 21 — 2
as shown in Fig. 2.7. The existence of u follows by local confluence, the

T -~ 21 -2z

! :

L.C. x :

1 1

4 * A\ :

y1 ----»u Ind *!

| l

* Ind *: !
1

4 * \ * \4

Y ----->0V ----- > W

Fig. 2.7. Proof of Newman’s Lemma.

existence of v and w by induction hypothesis because x % y1 and x & 21,
respectively. Thus we get y | 2, i.e. P(x). a

Of course the other direction of the implication holds trivially.

Termination opens a particularly easy path to confluence via local conflu-
ence. For nonterminating relations we can still localize the confluence test
if we restrict the way in which forks are closed.

30 2 Abstract Reduction Systems
Definition 2.7.3 A relation — is strongly confluent (Fig. 2.5) iff
Y~z -y = Jz.y >z &y

Beware of the symmetry in this definition: y; < £ — y2 must imply both
Y1 — 21 & yg and y; = 2z < yp for suitable z; and z;. Therefore neither of
the relations in Fig. 2.6 is strongly confluent.

Lemma 2.7.4 Any strongly confluent relation is confluent.

Proof By Theorem 2.1.5 it suffices to show that strong confluence implies
semi-confluence:

xl xz cese e oo $n_1 —_p.xn
I 1 1
| | |

S.C. = = SC =

| I]

* \J \/ * \

Yr -yt Ynel - " Un

Formally, this is a proof of y1 « 21 = &, = Jyn. Y1 — Yn — Zp by
induction on n. a

The reader may wonder if such a strong property can be of practical use.
The trick is not to apply Lemma 2.7.4 directly to the real object of interest
— but to define a strongly confluent relation —, such that = = 5,. Now
Lemma 2.7.4 yields confluence of —¢ which carries over to — using the
following observation:

Fact 2.7.5 If 5, = 54 then —1 is confluent iff —o is confluent.

The following lemma facilitates the application of this fact:

Lemma 2.7.6 If —1 C —9 C 5 then 51 = 59.

Proof Because the reflexive transitive closure is a monotone and idempotent
operatii)n, —1 C —9 C 5 implies 5 C 55 C (—31)* = %, and thus

*
—)l = —)2. D

Putting Lemma 2.7.4, Fact 2.7.5 and Lemma 2.7.6 together we obtain

Corollary 2.7.7 If —1 C —9 C 51 and —9 is strongly confluent, then —1
is confluent.

In practice we are able to work with a yet stronger property:
Definition 2.7.8 A relation — has the diamond property (Fig. 2.5)t iff

Y1 — Y2 = Jz. Y1 — 2 — Y.

t For layout reasons, our diamonds frequently turn into squares.

2.7 Proving confluence 31

The name is inspired not just by the corresponding diagram but also because
the property is hard to obtain and precious.

Obviously, the diamond property implies strong confluence. Hence Corol-
lary 2.7.7 also holds if —9 has the diamond property. Note further that —
is confluent iff = has the diamond property.

2.7.1 Commutation

Confluence proofs can also be localized by splitting a reduction up into
several smaller reductions and proving them confluent separately. In the
sequel let —71 and —9 be two reductions on A. Clearly, confluence of —
and —9 does not in general imply confluence of —1 U—4 (counterexample?).
However, it does if —1 and —9 commute:

Definition 2.7.9 (See Fig. 2.8.) We say that —; and —2

commute iff Y1 T Do yp = Tz, Y1 o0 2 &1 1,
strongly commute iff y; 1z =9y = Jz. Y1 o2 2 <1 Yo,
have the commuting diamond property iff

Y1 < 1T —2Y2 = dz. Y1 —2 2 <1 Y2.

Fig. 2.8. Commutation, strong commutation, the commuting diamond property.

Note that “—7 and —9 commute” does not mean —1 0 —9 = —9 0 —1 but
<*—1 03y C B0 4*—1. Note also that “—; and —9 strongly commute” is
an asymmetric property, but will be used only in situations where this does
not matter.

Commutation can be seen as a generalization of confluence to two rela-
tions. In fact, we could have introduced commutation first and confluence
later on as a derived notion: — is confluent iff —» and — commute. We
prefer to generalize matters in stages.

The Commutative Union Lemma tells us that in certain cases union
preserves confluence:

Lemma 2.7.10 If —1 and —9 are confluent and commute, then —1 U —o
is also confluent.

32 2 Abstract Reduction Systems

Proof Every (—1 U —3)* reduction consists of alternating segments of —;
and 5, reductions. Hence the following tiling argument proves the claim:

* *
1 : 2
1 (1) *1 (12) *1
: . (1) Confluence of —
’{4;4 (2) Confluence of —,
o2 (12) i 2) ‘o (12) Commutation of —1 and —9
SRS SR S
1 2
The above proof is a bit informal because of the “...”. It can easily be made
completely formal by observing that the diagram without the “...” clearly

proves that -5 o -9 has the diamond property and is therefore strongly
confluent. It is also easy to see that (for arbitrary —; and —3) we have

(—1U—2) € (H1059) € (m1U—)*
By Corollary 2.7.7 it follows that —1 U —9 is confluent. a
Commutation proofs are often simplified by the Commutation Lemma:
Lemma 2.7.11 Two strongly commuting reductions commute.

This generalizes Lemma 2.7.4. Generalizing the proof is recommended as
an exercise.

Exercises

2.29 Give an indirect proof of Newman’s Lemma by showing that if —
is locally confluent but not confluent, then — contains an infinite
reduction sequence. (Hint: show that an element with two distinct
normal forms has a direct successor with two distinct normal forms.)

2.30 A reduction —, is a refinement of — if — C 5, and a compatible
refinement if additionally z -, y = z | y. Show the following:

(a) Let —, be arefinement of —. Then —, is a compatible refinement
of »iffz -,y >z=>z] 2

(b) Let —, be a compatible refinement of —. Then —, is confluent
iff — is confluent.

2.31 Does strong confluence imply the following property?
Y-z —ye = Jz.oy >z Y

Give a proof or counterexample.

2.32

2.33

2.34

2.35
2.36
2.37

2.8 Bibliographic notes 33

Show that if — has the diamond property, every element either is in
normal form or has no normal form.

Let — satisfy the following weak form of the diamond property: if
y < ¢ — z and y # z then there is a u such that y — u < 2. Show
that if an element a has a normal form, then

(a) there is no infinite reduction sequence starting from a, and
(b) all reductions from a to its normal form have the same length.

Let —, 7 € I, be a set of reductions. Show that |J;c; —; is confluent
if —; and —; commute for every 7,5 € I.

Show that (—1 U —2)* = (51U i>2)*.

Prove the Commutation Lemma.

Let —1 and —9 be two reductions on A such that —1U—3 is transitive.
Show that —; U —4 is terminating iff —; and — are terminating.
(Hint: indirect proof.)

2.8 Bibliographic notes

Much of the material in this chapter is mathematical folklore found in in-
troductory books on ordered sets, relations, or graphs.

The multiset order is due to Dershowitz and Manna [76].

The slick inductive proof of Newman’s Lemma is due to Huet [119]. Con-
fluence proofs based on the diamond property (Corollary 2.7.7) were pion-
eered by Tait and Martin-Lof [21, Chapter 3] in the context of A-calculus.
The Commutative Union Lemma and the Commutation Lemma were dis-
covered by both Hindley [112] and Rosen [217].

3
Universal Algebra,

The purpose of this chapter is twofold. On the one hand, it introduces basic
notions from universal algebra (such as terms, substitutions, and identit-
ies) on a syntactic level that does not require (or give) much mathematical
background. On the other hand, it presents the semantic counterparts of
these syntactic notions (such as algebras, homomorphisms, and equational
classes), and proves some elementary results on their connections. Most of
the definitions and results presented in subsequent chapters can be under-
stood knowing only the syntactic level introduced in Section 3.1. In order
to obtain a deeper understanding of the meaning of these results, and of
the context in which they are of interest, a study of the other sections in
this chapter is recommended, however. For more information on universal
algebra see, for example, [100, 55, 173].

3.1 Terms, substitutions, and identities

Terms will be built from function symbols and variables in the usual way.
For example, if f is a binary function symbol, and z,y are variables, then
f(z,y) is a term. To make clear which function symbols are available in a
certain context, and which arity they have, one introduces signatures.

Definition 3.1.1 A signature X is a set of function symbols, where
each f € ¥ is associated with a non-negative integer n, the arity of f. For
n > 0, we denote the set of all n-ary elements of & by £(™. The elements
of £ are also called constant symbols.

For example, if we want to talk about groups, which are equipped with an
identity element, a unary inversion operation, and a binary multiplication
operation, we use the signature X := {e, 1, f}, where e has arity 0, i is
unary, and f is binary. If we consider the set of non-negative integers, we

34

8.1 Terms, substitutions, and identities 35

may use the same signature, but now e denotes the smallest non-negative
integer, i denotes the successor function, and f denotes addition.

In many applications (such as algebraic specification), one is faced with
the problem that some operations are not defined on the whole domain. For
example, the multiplicative inverse in a field is not defined on 0, and if we
want to consider lists of non-negative integers, addition is not defined on
lists, and append is not defined on non-negative integers. To cope with such
situations, one usually introduces sorts, which (in the simplest version) just
partition the domain (for example, into the set of non-negative integers,
NAT, and the set of lists of non-negative integers, LIST). The signature
now determines on which sorts a function is defined, and to which sort the
result of the function application belongs. For example, the operation cons,
which adds a new element to the beginning of a list, would be of signature
NAT x LIST — LIST. In order to simplify notation, we shall not consider
different sorts here. All the results and definitions can, however, easily
be extended to the many-sorted case, where sorts are simply assumed to
partition the domain. It should be noted that such an easy transfer of results
is no longer possible when considering an order-sorted framework [224],
where one sort can be a subsort of another (e.g. NAT < INT).

Definition 3.1.2 Let X be a signature and X be a set of variables such
that ¥ N X = (. The set T'(X, X) of all X-terms over X is inductively
defined as

e X CT(%,X) (ie. every variable is a term),

eforalln >0, all f € £, and all ty,...,t, € T(3,X), we have
f(t1,...,tn) € T(E,X) (i-e. application of function symbols to terms
yields terms).

For example, for the signature ¥ = {e, 1, f} from above, f(e, f(z,i(x))) is
a Yg-term that contains the variable z. For the 0-ary function symbol e, we
have written the corresponding term simply as e instead of e() (i.e. e applied
to the sequence of terms of length 0). Binary function symbols (such as +
and x) are often written in infix form, with parentheses if necessary; e.g.
(z +y) + z instead of +(+(z,y),2). If g is a unary function symbol, then
g™(t) abbreviates the term g(g(...g(t)...)), the n-fold application of g to t.
In the context of terms, symbols f, g, h usually stand for function symbols
(of arity > 0), a, b, ¢ for constant symbols, and z,y, z for variables.

The structure of a term can be nicely illustrated by representing it as a
tree, where function symbols are nodes and arrows point to the arguments
of the function. The tree in Fig. 3.1 depicts the term ¢ of our example.

36

In

3 Universal Algebra

221

Fig. 3.1. Tree representation of ¢t = f(e, f(z,i(z))).

Using a standard numbering of the nodes of the tree by strings of positive

integers (as illustrated in the example), we can refer to positions in a term.

our example, position € (the empty string) refers to the symbol f on

the top level, and position 2 refers to the symbol f that occurs as second
argument of the top-level f. The subterm of ¢ at position 2 is f(z,i(x)), and
the subterm of ¢ at position 22 is i(x). More formally, notions like position
and subterm can be defined by induction on the structure of terms.

Definition 3.1.3 Let ¥ be a signature, X be a set of variables disjoint
from ¥, and s,t € T(Z, X).

1.

2.

The set of positions of the term s is a set Pos(s) of strings over the
alphabet of positive integers, which is inductively defined as follows:

o If s =z € X, then Pos(s) := {€}, where € denotes the empty string.
o If s = f(s1,...,8n), then

n

Pos(s) == {e} U | J{ip | p € Pos(s:)}-
i=1
The position € is called the root position of the term s, and the function
or variable symbol at this position is called the root symbol of s. The
prefix order defined as

p < g¢ iff there exists p’ such that pp’ =g¢

is a partial order on positions. We say that the positions p, g are parallel
(p ||) iff p and q are incomparable with respect to <. The position p is
above ¢ if p < ¢ and p is strictly above ¢ if p < ¢ (below is defined
analogously).

The size |s| of a term s is the cardinality of Pos(s).

8.1 Terms, substitutions, and identities 37

3. For p € Pos(s), the subterm of s at position p, denoted by s|, is
defined by induction on the length of p:

3|€ =8,
f(s1,.--,8n)lig = Silq-

Note that, for p = ig, p € Pos(s) implies that s is of the form s =

f(s1,...,8n) with i < n.
4. For p € Pos(s), we denote by s[t], the term that is obtained from s by

replacing the subterm at position p by ¢, i.e.

sltle = t,
f(s1,---, Sn)[t]iq = f(s1,... ,Si[t]q, ey Sn)-
5. By Var(s) we denote the set of variables occurring in s, i.e.
Var(s) := {z € X | there exists p € Pos(s) such that s|, = z}.
We call p € Pos(t) a variable position if ¢|, is a variable.

For the term ¢ of the above example, Pos(t) = {¢,1,2,21,22,221}, t|s2 =
i(z), tle]a = f(e,e), Var(t) = {z}, and |t| = 6. Note that the size of ¢ is
just the number of nodes in the tree representation of ¢. The set of positions
of a term is obviously closed under taking prefixes, i.e. if ¢ € Pos(t) then
p € Pos(t) for all p < q. The following lemma states some useful rules for
computing with positions and subterms.

Lemma 3.1.4 Let s,t,r be terms and p, q be strings over the positive inte-
gers.

1. If pg € Pos(s), then s|pg = (s|p)lq-
2. If p € Pos(s) and q € Pos(t), then

(sltlp)lpg = tlos

(sltlp)lrlpg = sltlrlqlp:
3. If pq € Pos(s), then
(sltlog)lp = (slp)[tlg,
(sltlpg)lrlp = slrlp.

4. If p and q are parallel positions in s (i.e. p || q), then

(sltlp)lg = slgs
(s[tlp)[rlq (s[rlg)[t]p-

38 8 Universal Algebra

Proof These rules are quite obvious when we consider the intuitive meaning
of positions in the tree representation of a term, but they can, of course,
also be proved by induction according to the formal definitions given above.
As an example, we show, by induction on the length of p, that s|p, = (s|p)|q
holds for all pg € Pos(s).

For p = €, we have pg = ¢, and thus s|,q = s|q. In addition, p = € implies
s|p = s, which shows s|q = (s|p)|q-

Now, assume that p = ip’. Because ip’q € Pos(s), we know that s is of the

form s = f(s1,...,8,) with i < n. By definition, s|pq = $|ipqg = Silpq, and by
induction s;|pq = (sip)|q- Again by definition, we obtain s;|,y = sl = slp,
which finishes the proof of the induction step. a

Terms that do not contain variables will sometimes play a particular role.

Definition 3.1.5 Let X be a signature, and X be a set of variables disjoint
from X. A term t € T(X, X) is called ground iff Var(t) = 0. The set of all
ground terms over ¥ is denoted by T'(X, 0) or simply T'(X).

The main difference between constant symbols and variables is that the
latter may be replaced by substitutions.

Definition 3.1.6 Let ¥ be a signature and V be a countably infinite set
of variables. A T'(X, V)-substitution—or simply substitution, if the set of
terms is irrelevant or clear from the context—is a function o : V. — T'(%, V)
such that o(z) # = for only finitely many zs. The (finite) set of variables
that o does not map to themselves is called the domain of o: Dom(o) :=
{z € V| o(z) # z}. If Dom(c) = {z1,...,Z,}, then we may write o as

o={z1— o(z1),...,2n— o(zn)}.

The range of o is Ran(o) := {o(z) | x € Dom(o)}, and the variable
range of o consists of the variables occurring in Ran(o):

VRan(o) := U Var(o(x)).
z€Dom(o)
We say that o instantiates x if x € Dom(o). The set of all T(X,V)-
substitutions will be denoted by Sub(T'(X,V)) or simply Sub.
Any T'(X, V)-substitution o can be extended to a mapping : T'(X,V) —

T(%,V) as follows: for z € V, &(z) := o(z), and for a non-variable term
s = f(s1,...,8n) we define 5(s) := f(d(s1),...,0(sn))-

The application of a substitution o to a term simultaneously replaces all
occurrences of variables by their respective o-images. For example, let s =
f(e,z) and t = f(y, f(z,y)), and let 0 = {z — i(y),y — e}. Then &(s) =

8.1 Terms, substitutions, and identities 39

f(e,i(y)) and &(¢t) = f(e, f(i(y),e)). The restriction to finite domains allows
for an easy finite representation of substitutions. It is justified by the fact
that we are usually only interested in the effect of applying a substitution
to a finite set of terms {s1,...,sp}, and thus only the images of the finitely
many variables in Var(s1) U... U Var(s,) are of interest.

The composition o7 of two substitutions o and 7 is defined as o7(x) :=
o(7(x)). Obviously, o7 is a mapping of V into 7 (X, V'), and since o7(z) = z
holds for all variables z € V —(Dom(o)UDom(7)), we know that it is again a
substitution. In addition, it is easy to see that composition of substitutions
is an associative operation. The definition of composition makes sure that
the extension of the composition o7 is just the composition of the extensions
of o and 7, i.e. 7 = 67 (where 67 denotes just the usual composition of
mappings). To simplify notation, we usually do not distinguish between a
substitution ¢ : V. — T(X,V) and its extension ¢ : T'(X,V) — T(%,V).
In the following, o will be used to denote both. In addition, we sometimes
simply write ot instead of o(t) for the application of the substitution o to
the term t¢.

A term t is called an instance of a term s iff there exists a substitution
o such that o(s) = ¢. In this case, we write ¢ > s. If ¢ is an instance of
s but not vice versa then we write ¢ > s (i.e. > is the strict partial order
associated with the quasi-order 2).

Definition 3.1.7 Let X be a signature and V a countably infinite set
of variables disjoint from ¥. A X-identity (or simply identity) is a pair
(s,t) € T(X,V) x T(X,V). Identities will be written as s ~ t. We call s
the left-hand side (lhs) and ¢ the right-hand side (rhs) of the identity
s~ t.

A given identity consists of two terms, and thus contains only finitely many
variables. We have chosen a countably infinite set of variables to allow
for identities containing an arbitrary finite number of different variables.
Identities can be used to transform terms into other “equivalent” terms by
replacing instances of the left-hand side with the corresponding instances of
the right-hand side and vice versa. For example, the identity f(z, f(y,2)) ~
f(f(z,y), z), which we interpret as saying that f is associative, can be used
to transform f(e, f(i(e), e)) into f(f(e,i(e)),e).

Definition 3.1.8 Let E be a set of Y-identities. The reduction relation
—g CT(X,V)xT(X,V) is defined as
s—pt iff
J(l,r) € E, p € Pos(s), o € Sub. s|, = o(l) and t = s[o(7)]p.

40 8 Universal Algebra

We sometimes write s —% t to indicate at which position the reduction
takes place.

This situation is illustrated in Fig. 3.2.

—E

Fig. 3.2. In the term s, the instance o (l) of I, which occurs at position p, is replaced
by the corresponding instance o(r) of r.

For example, let

G :={f(z, f(y,2)) = f(f(2,9),2), f(e,2) =z, f(i(x),2) = e}.

Then f(i(e), f(e,e)) —a f(f(i(e),e),e) —¢ f(e,e) —¢ e, where the first
reduction takes place at position p; = € with the first identity and with
the substitution o1 = {z +— i(e),y — e,z — e}, the second reduction
takes place at position ps = 1 with the third identity and the substitution
o2 = {z — e}, and the third reduction takes place at position p3 = € with
the second identity and the substitution o3 = {z — e}.

As defined in Chapter 2, 5z denotes the reflexive transitive closure of
—g, and & g denotes the reflexive transitive symmetric closure of —g. One
important goal of equational reasoning is to design decision procedures for
&p (see Chapter 4 for more details). In the subsequent sections of this
chapter, we present a semantic characterization of < g, which makes clear
why this relation is of great interest in universal algebra. But first, we give
another syntactic characterization of < in terms of closure under certain
operations.

Definition 3.1.9 Let = be a binary relation on T'(X, V).

1. The relation = is closed under substitutions iff s =t implies o(s) =
o(t) for all s,t € T(X,V) and substitutions o.

8.1 Terms, substitutions, and identities 41

2. The relation = is closed under X-operations iff s; = t1,...,s, =
tn imply f(s1,...,8n) = f(t1,...,tn) for all n > 0, f € T and
81,..y8n,t1,...,tn € T(X, V).

3. The relation = is compatible with X-operations iff s = t implies
f(s1,--+,8i=1,8,8i+1,---,8n) = f(81,-.,8i-1,%, Si+1,-..,8n) for all n >
0,fex®™ i=1,...,n,and s1,...,81,5,t,8i41,.-., 8, € T(Z,V).

4. The relation = is compatible with X-contexts iff s = s’ implies ¢[s], =
t[s'], for all X-terms t and positions p € Pos(t).

The following lemma is an easy consequence of the definition of —g.

Lemma 3.1.10 Let E be a set of X-identities. The reduction relation —g
is closed under substitutions and compatible with X-operations.

In general, — g is not closed under ¥-operations because the reduction takes
place only at a single position.

Lemma 3.1.11 Let = be a binary relation on T'(X,V).

1. The relation = is compatible with X-operations iff it is compatible with
3.-contexts.

2. If = is reflexive and transitive, then it is compatible with X -operations
iff it is closed under X-operations.

Proof The <-direction of the first statement is obvious, and the =--direction
can be shown by an easy induction argument on the length of the position p.
Reflexivity yields the <=-direction of the second statement, and transitivity
the =--direction. O

Theorem 3.1.12 Let E be a set of S-identities. The relation < g is the
smallest equivalence relation on T'(X, V') that contains E and is closed under
substitutions and X-operations.

Proof By definition, &g is an equivalence relation. Using Lemma 3.1.10,
one can easily show by induction that < g is also closed under substitutions
and compatible with X-operations. Since < is reflexive and transitive, this
implies that < g is closed under Y-operations.

Now, assume that = is an equivalence relation on 7'(%, V') that contains E
and is closed under substitutions and X-operations. We prove that s —g t
implies s = t. Since, by definition, <> is the smallest equivalence relation
containing — g, we can then deduce that &g C =.

From s — g t it follows that there exist an identity (I,7) € E, a position
p € Pos(s), and a substitution o such that s|, = o(l) and t = s[o(r)],. Since
= contains F, we know that [= r, which implies that o(l) = o(r) because

42 8 Universal Algebra

= is closed under substitutions. Since = is reflexive and closed under -
operations, it is also compatible with Y-operations, and thus compatible
with X-contexts. This yields s = s[o(l)], = s[o(r)], = t. a
The theorem says that <> can also be obtained by starting with the binary
relation E, and then closing the relation under reflexivity, symmetry, tran-
sitivity, substitutions, and ¥-operations. Describing the closing process by
inference rules leads to equational logic:

(s~=t)e E

ElFs=t

Ers=t Ers=xt Ert=u

Frtxt Etrtws EFtrs=u
EFtrs~t EFsi=t EFs,~t,
EFo(s)~a(t) Et f(s1,...,80) = f(t1,...,tn)

The notation E + s &~ t stands for “s =~ t is a syntactic consequence of E”.
The horizontal lines in the above rules separate the premises of the inference
rule from their conclusion, i.e. if the premises are already derived, then one
can also derive the conclusion. The first rule is the assumption rule and
asserts that any element of E is a syntactic consequence of E. The next
three rules express reflexivity, symmetry, and transitivity. Finally we have
instantiation with an arbitrary substitution ¢ and closure under all n-ary
function symbols f.
Inference rules can be composed to form proof trees:

1. Every instance of the assumption and the reflexivity rule is a proof tree.

2. Given an instance E'_sl“‘t}g,; sf“;'_s"'”t" of one of the above inference rules
and proof trees T; with conclusions E + s; =~ t;, i =1,...,n,
T ... T,
EtFs~t

is also a proof tree.
Example 3.1.13 Let E = {a = b, f(z) = g(z)}. The following tree depicts
a proof of E + g(b) = f(a):
Era=b EtF f(x)
EtFfla)=f®) EtFf(b)
Et+ f(a) ~ g(b)
Et g(b) = f(a)

Contrast this with the derivation of g(b) &g f(a): g(b) <k g(a) < £ f(a).

z)

g(
g9(b)

22 Q

8.1 Terms, substitutions, and identities 43

Although Theorem 3.1.12 tells us that s < g ¢ holds iff E + s ~ t can be
derived using the above inference rules, there are two important differences:

1.

3.1

3.2
3.3
3.4

3.5

3.6

3.7

3.8

The rewriting approach (which generates &p) allows the replacement
of a subterm at an arbitrary position in a single step; the inference rule
approach (which allows us to derive statements of the form E }) needs
to simulate this by many small steps of closure under single operations.
Closure under operations in the inference rule approach allows the sim-
ultaneous replacement in each argument of an operation; the rewriting
approach needs to simulate this by a number of replacements steps in
sequence.

Exercises

Let ¥ be a signature consisting of one binary function symbol, and
let X be a nonempty set of variables. Characterize those subsets of
N* (i.e. sets of strings of positive integers) that are of the form Pos(t)
for some term ¢t € T'(X, X).

Give inductive proofs for (2)—(4) of Lemma 3.1.4.

Show that the composition of substitutions is an associative operation.
Let o and 7 be substitutions.

(a) Describe the variable range VRan(o7) of the composition of o
and 7.

(b) Under what conditions do we have o7 = 77 What are the condi-
tions for 77 = 7 to hold?

Let T'(X, {x}) be the set of ¥-terms over one variable z. The reduction
relation —1 on T'(X, {z}) is defined by s —; ¢t iff s is an instance of
t and s # t. Show that — is terminating and confluent. Can this
result be generalized to the case of more than one variable?

Let f be a binary function symbol, and

G ={f(z, f(y,2)) = f(f(z,9),2), fe,x) =, f(i(x),x) ~ e}.

Show that f(z,e) <S¢ .
Let f be a binary function symbol, and

E={f(=z, f(y,2) = f(f(z,y),2), f(f(z,y),2) =~ z}.
Show that f(z,2) &5 z and f(f(z,),2) 5 f(z,2).
Let £ = {f} for a binary function symbol f, and E = {f(z, f(y,2)) =

f(f(z,y),2), f(z,2) = =, f(f(z,y),2) =~ f(z,y)}. Show that it is
decidable whether two given X-terms s, t satisfy s <> t or not. (Hint:

44 8 Universal Algebra

for a given X-term s, try to determine what the smallest terms in the
& g-equivalence class of s look like.)
3.9 Prove Lemma 3.1.10 and Lemma 3.1.11.

3.2 Algebras, homomorphisms, and congruences

For a given signature ¥, a ¥-algebra provides an interpretation of all the
function symbols in .

Definition 3.2.1 Let ¥ be a signature. A Y-algebra A consists of

e a carrier set (domain) A, and
e a mapping that associates with each function symbol f € () a
function f4: A" — A (for all n > 0).

If the signature is irrelevant or clear from the context, we shall sometimes
simply use the term “algebra” in place of “¥X-algebra”.

As an example, let us again consider the signature ¥g = {e, 1, f}, where
e has arity 0, i is unary, and f is binary. The additive group of integers,
Z, has as carrier the set of all integers Z, and interprets f as addition of
integers, ¢ as (unary) negation, and e as 0.

One can construct new Y-algebras from given ones by forming subalgebras,
homomorphic images, quotient algebras, and direct products.

Definition 3.2.2 Let X be a signature.

1. The X-algebra B is a Y-subalgebra of the Y-algebra A iff its carrier B
is a subset of the carrier A of A, and for all n > 0, all f € 2™, and all
bi,...,bn € B we have fA(by,...,by) = fB(b1,...,bs) € B.

2. If X is a subset of the carrier of the X-algebra A, then the Y-subalgebra
of A generated by X is the smallest subalgebra of A4 (w.r.t. inclusion
of carrier sets) that contains X. If this subalgebra is already the whole
algebra A, then we say that A is generated by X. Note that the
smallest subalgebra of A containing X always exists since the intersection
of all subalgebras of A containing X is again a subalgebra of A containing
X.

For example, the set E := {2z | z € Z} of all even integers is the carrier of a
subalgebra € of Z, and this subalgebra is generated by {2}. The algebra Z
itself is generated either by {1} or by {—1}, but it is not generated by any
other singleton set.

Definition 3.2.3 Let ¥ be a signature, and let A, B be Y-algebras. A
Y-homomorphism ¢ : A — B is a mapping of A into B such that for

3.2 Algebras, homomorphisms, and congruences 45

all n > 0, f € 2™, and ay,...,a, € A we have ¢(fA(ay,...,a,)) =
fB(¢(a1),--.,9(as)). If the mapping ¢ is onto, then B is called a homo-
morphic image of A. A homomorphism ¢ : A — A is called an endomor-
phism, and a homomorphism that is a bijection is called an isomorphism.
A and B are isomorphic (A = B) iff there is an isomorphism ¢ : A — B.

As with substitutions, we denote the composition of homomorphisms by
juxtaposition, i.e. ¢ denotes the composition of the homomorphisms v :
A — B and ¢ : B — C, which is a homomorphism of A into C. In our
example, the mapping ¢ : Z — Z : z — 2z is an endomorphism of Z, and it
is an isomorphism between Z and £.

Definition 3.2.4 Let A be a X-algebra. An equivalence relation = on
its carrier A is called a congruence on A iff it is compatible with the
interpretation of all function symbols of X, i.e. for all n > 0, all f € (™),
and all a; = b1,...,a, = b, in A we have

fAar,...,a) = fADy,. .., by).

The quotient algebra .A/= has as carrier the set of equivalence classes
[a]= := {b € A|a = b}, and interprets the symbols f € (™ (for all n > 0)
as fA=(la1lz, ..., [an]=) := [fA(ar, ..., an)]=

Note that the definition of a congruence makes sure that the definition of
fA/ = is independent of the choice of representatives from each congruence
class. In our example, the relation =2 := {(21, 22) | 2 is a divisor of z; — 23}
is a congruence on Z. The quotient algebra is the (unique) Abelian group
of order 2, with carrier set {[0]=,, [1]=,}-

There is a close connection between homomorphic images and quotient
algebras.

Lemma 3.2.5 Let ¥ be a signature, and A,B be X-algebras.

1. Let = be a congruence on A. The quotient algebra A/= is the homo-
morphic image of A under the canonical homomorphism 7= : A —
Al=:am [a]=.

2. Let ¢ : A — B be a surjective homomorphism of A onto B. Then
B is isomorphic to A/=,, where =4 denotes the kernel of ¢, i.e. the
congruence =4 := {(a,d’) | ¢(a) = #(a’)}.

3. Let ¢ : A — B be a homomorphism and = be a congruence on A. If

C =4, then there exist a homomorphism ¢= : A/= — B such that

; P=Tr=.

46 3 Universal Algebra

Proof (1) Obviously, the mapping n= is onto. Thus, it is sufficient to
prove that 7= is a homomorphism. This is an immediate consequence of the
definition of 7= and the interpretation of the function symbols in 4/=.

(2) By definition, =, is an equivalence relation, and since ¢ was assumed
to be a homomorphism, it is even a congruence. In addition, it is easy to
see that the mapping ¢ : A/=, — B : [a]=, — ¢(a) is an isomorphism.

(3) Let us define the mapping ¢= : A/= — B by ¢=([a]z) := #(a). By
assumption, a = o' implies ¢(a) = ¢(a’), which shows that this definition
is independent of the choice of the representative for the congruence class
[a]=. In addition, @ = ¢=m= by the definition of #=. The fact that ¢ is a
homomorphism can easily be used to show that ¢= is a homomorphism as
well. d

Definition 3.2.6 Let I be an arbitrary index set, and assume that (A;)ier
is an I-indexed family of X-algebras. The direct product of this family is
the Y-algebra P = [];c; A;i that has the Cartesian product P := [],c; A; of
the carrier sets A; as its carrier, and which interprets the function symbols
component-wise, i.e. if m; denotes the projection to the ith component, then
foralln>0,all fe€ =M™ allpy,...,pp€ P,andallie I

Wi(fp(pla s apn)) = fAt(”ri(pl)a s a7ri(n))

Exercises
3.10 Let Z be the additive group of the integers.

(a) Determine all subalgebras of Z and all congruences on Z.
(b) Characterize those subsets of Z of cardinality 2 that generate Z.
(c) Given the integers a, b, c € Z, we define the mapping h(,) : Z —
Z by
h(ape)(2) = az’ +bz +c.

For what triples (a,b,c) is P(a,b,c) @n endomorphism of Z7?

(d) Given the integers a, b, we define the mapping g4 : Z X Z — Z
by

9(ap) (21, 22) := az1 + bza.

Show that g,) is @ homomorphism of the direct product Z x Z
into Z. For what tuples (a,b) is (o) onto?

3.8 Free algebras 47
3.3 Free algebras

If an algebra A is generated by a subset X of its carrier, then any homo-
morphism of A into an algebra B is uniquely determined by the images of
the elements of X.

Lemma 3.3.1 Let A, B be two X-algebras, and assume that A is generated
by X. If ¢ and 3y are homomorphisms of A into B, and if ¢ and ¢ coincide
on X, then they coincide on A, i.e. ¢ = 1.

Proof First, it is easy to see that the carrier set of the X-subalgebra of
A generated by X is obtained as |J;>o Ai, where Ap := X, and A;y; :=

A;U{f(a1,...,an) | n>0,f€ 2™ a1,...,a, € A}
Second, since A is generated by X, we know that A = J;>¢ 4i, and it is
easy to show by induction on ¢ that ¢ and 1 coincide on A; for all 7 > 0.
O

In general, however, not every mapping of X into B can be extended to
a homomorphism of A into B. Algebras for which this is always possible
(under certain restrictions) are called free.

Definition 3.3.2 Let ¥ be a signature, X be a set, and K be a class of
Y-algebras. The Y-algebra A is called free in £ with generating set X
iff the following three properties are satisfied:

1. A is generated by X C A,

2. A€ K, and

3. for every X-algebra B in K, every mapping ¢ : X — B can be extended
to a homomorphism ¢ : A — B.t

An algebra free in IC with an empty generating set is called an initial alge-
bra in K.

For example, the algebra Z is the free Abelian group with one generator, i.e.
Z is free in the class of all Abelian groups, and it is generated by X = {1}.
Not every class of algebras contains free algebras (see Example 3.3.4 below),
but if a free algebra (for a given cardinality of the set of generators) exists,
then it is unique up to isomorphism.

Theorem 3.3.3 Let ¥ be a signature, X,Y be sets, and K be a class of
Y-algebras. If A is free in K with generating set X, B is free in K with
generating set Y, and | X| = |Y|, then A= B.

t Since A is generated by X, this extension is unique by Lemma 3.3.1.

48 8 Universal Algebra

Proof Because X and Y are of the same cardinality, we know that there exist
bijections ¢ : X — Y and ¥ : Y — X such that ¥ = p~!. Since A s free in K
with generating set X, the mapping ¢ can be extended to a homomorphism
% : A — B. Similarly, ¥ has an extension to a homomorphism 9:B— A
The composition 5&5 is a homomorphism from A into A, and its restriction
to X is ¥¢ = Idy, i.e. the identity mapping on X. Now, both 5(,5 and Idg
are homomorphisms from A into A that extend Idy. This implies 5{5 =Idy,
since A is generated by X.
A symmetry argument shows that c’ﬁ@ = Idg. Thus @ and 9 are isomor-
phisms that are inverse to each other. In particular, it follows that A = B.
|

As an obvious corollary we obtain that the initial algebra in a given class is
unique up to isomorphism, if it exists. The following example shows that a
class of algebras need not contain initial algebras.

Example 3.3.4 Let ¥ = {a,b,c} be a signature that consists of three
constant symbols. We consider the class

K := {A| Ais a T-algebra that satisfies a* = b4 or a* = cA}.

Now, assume that Ag is an initial algebra in K. Since Ag is an element of
K, we know that a”*® = b4 or a° = ¢4 holds. Without loss of generality
we assume that a® = b4 is satisfied. (The other case can be treated
analogously.)

Let us define the X-algebra B as follows: it has carrier set B = {0, 1},
and interprets the constants as a® = 0, b8 = 1, and ¢® = 0. Because of
aB = B, we know that B belongs to K. Since Ay was assumed to be initial
in K, there exists a homomorphism ¢ : Ay — B. But then a0 = pAo
implies a® = ¢(a) = ¢(bA°) = b8, which contradicts the definition of the
interpretation of @ and b in B.

Exercises

3.11 Show that Z x Z is the free Abelian group with two generators, i.e.
there exists a subset X of Z x Z of cardinality 2 such that Z x Z is
free with generating set X in the class of all Abelian groups.

3.12 Let A,B € K, where K is a class of Y-algebras that contains a finite
algebra of cardinality larger than 1, and assume that A is free in
K with finite generating set X and that B is free in K with finite
generating set Y. Show that the following holds: if A is isomorphic
to B then |X| =Y.

8.4 Term algebras 49

3.4 Term algebras

For a signature ¥ and a (disjoint) set of variables X, one can use T'(X, X) as
carrier of a Y-algebra in which the function symbols “interpret themselves”.

Definition 3.4.1 Let ¥ be a signature and X be a set of variables disjoint
from ¥. The ¥-term algebra 7 (X, X) has T(X, X) as carrier set, and
interprets the function symbols f € £(™ (for n > 0) as follows:

FIEX) T2, X)* - T(S,X) : (t1,. .. tn) > F(tr,- .., tn).

Y-term algebras play an important réle in universal algebra since they are
free in the class of all X-algebras.

Theorem 3.4.2 7 (X, X) is free with generating set X in the class of all
Y-algebras.

Proof Obviously, 7 (%, X) is a Y-algebra (i.e. it belongs to the given class),
and it satisfies X C T(X,X). As an easy consequence of the inductive
definition of Y-terms we obtain that 7 (X, X) is generated by X.

Assume that B is a ¥-algebra and that ¢ : X — B is an arbitrary mapping.
Define an extension @ : T'(X, X) — B of ¢ by induction on the structure of
terms:

e if z € X then @(z) := p(z),
o if f € X forn >0, and if s1,..., s, are terms for which the images
&(81),...,P(sp) are already defined, then

P(f(s15---,8n)) = FE(@(s1); -, P(5n))-
By definition, ¢ is a ¥-homomorphism that extends ¢. a

In Section 3.1, we have introduced T'(X, V')-substitutions, which were defined
as mappings o : V — T'(X,V) that change only finitely many variables. In
addition, we have shown how to extend a given substitution to a mapping
:T(%,V) - T(X,V). Obviously, the definition of this extension is just a
special case of what we have done in the above proof. Thus, & is the unique
extension of o to an endomorphism of 7 (X, V). Since we usually do not
distinguish between a substitution and its extension, we can thus say that
a substitution is an endomorphism of the term algebra that coincides with
the identity mapping on almost all variables.

3.5 Equational classes

Recall that a X-identity is a pair s =~ t of terms in T'(X, V'), for a countably
infinite set of variables V. Intuitively, an identity holds in a ¥-algebra A if it

50 3 Universal Algebra

is true for all possible ways of replacing the variables in s, ¢ by elements of A.
The formal definition given below makes use of the fact that a given mapping
of variables to elements of A can be uniquely extended to a homomorphism.

Definition 3.5.1 The ¥-identity s ~ t holds in the ¥-algebra A (A |=
s = t) iff for all homomorphisms ¢ : 7(X,V) — A we have ¢(s) = ¢(t).

We use the name “identity” for a pair of terms s =~ t to express that this
equality is assumed to hold in an algebra, and distinguish this from the no-
tion of an “equation”, which must be solved in an algebra. Logically, the
difference is that identities are (implicitly) universally quantified whereas
equations are (implicitly) existentially quantified. It should be noted, how-
ever, that some authors do not make this distinction, and use the term
“equation” for what we call identity. For this reason, varieties (as defined
below) are sometimes also called equational classes.

Definition 3.5.2 Let X be a signature and E be a set of X-identities.

1. The Y-algebra A is a model of E (A |= E) iff every identity of E holds
in A.

2. The class of all models of E is called the Y-variety defined by E. It is
denoted by V(E).

As an example, consider the set of identities

G={f(z, f(y,2)) = f(f(x,9),2), f(e,z) =z, f(i(z),z) ~ e}.

The Y g-algebra Z is a model of G, and V(G) is the class of all groups. We
might now ask ourselves what kind of identities can be deduced from G, i.e.
what Y -identities hold in all groups.

Definition 3.5.3 Let E be a set of Y-identities.

1. The identity s =~ t is a semantic consequence of F (E = s~ t) iff it
holds in all models of E, i.e. for all A € V(FE) we have that s ~ ¢ holds
in A.

2. The relation

~pi={(st) €T, V) xT(,V) | Es~t}

is called the equational theory induced by E.
3. The set of identities F is called trivial iff xg =T'(X,V) x T(%,V).

Obviously s ~ t € F implies that s ~g t. In addition, it is easy to see that
the relation ~pg is a congruence relation on 7 (X,V). Thus, we can build
the quotient algebra 7 (X,V)/xy.

3.5 Equational classes 51

Lemma 3.5.4 Let E be a set of X-identities, and ~g be the equational
theory induced by E.

1. The congruence =g is fully invariant, where fully invariant means that
it is closed under endomorphisms, i.e. s =g t implies ¢(s) =g P(t) for
all endomorphisms ¢ of T(X,V).

2. For any homomorphism ¢ : T(X,V) — T(X,V)/xy there ezists an en-
domorphism ¢ of T(X,V) such that ¢ = wxp1), where T, denotes the
canonical homomorphism of T(X,V) onto T(X,V)/~p-

Proof (1) Let ¢ be an endomorphism of 7(X,V) and assume that s ~g ¢
holds. We must show that ¢(s) ~g ¢(t) holds as well, i.e. that the identity
¢(s) =~ ¢(t) holds in all models of E. Thus, let A € V(E), and let ¢ :
7(%,V) — A be a homomorphism. We must show that ¥(¢(s)) = ¥(¢(t)).
Since A € V(FE), we know that s ~g t implies that s ~ ¢ holds in .A. Conse-
quently, ¥(4(s)) = Yd(s) = Yd(t) = ¥ (p(t)), since ¢ is a homomorphism
of T(X,V) into A. This concludes the proof that ¢(s) ~ ¢(t) holds in A.
(2) Let ¢ : T(X,V) — T(X,V)/~y be a homomorphism. Let us define
the endomorphism 9 of 7(X3,V) as follows: for all z € V, let ¢, be an
arbitrary element of the ~g-class ¢(z). Now 1 is the unique endomorphism
of T(X,V) that extends the mapping V — T'(X,V) : — t,. (Recall that
T(%,V) is free for the class of all ¥-algebras, and thus this extension exists.)
By definition of %, the homomorphism 7% coincides with ¢ on V, and
since 7 (%, V) is generated by V, we can deduce ¢ = 7). O

Lemma 3.5.5 Let E be a set of Y-identities.

1. E is trivial iff x =g y holds for some pair of distinct variables x,y € V.
2. E is trwvial iff V(E) consists of algebras of cardinality less than or equal
to 1.

Proof (1) Obviously, if xg = T(X,V) x T(X,V), then z =g y holds for
all z,y € V. Conversely, assume that £ ~g y holds for distinct variables
z,y € V. For every s,t € T(X,V) there exists an endomorphism ¢ of
7T(X,V) such that ¢(z) = s and ¢(y) = t. Because ~ is fully invariant, we
can thus deduce s ~g t by applying ¢ to x ~g y.

(2) Assume that E is trivial, and let A be a model of E. By the first
part of the lemma, there are distinct variables z,y € V such that z ~g v,
and thus the identity « ~ y holds in 4. For every a1,as € A there exists a
homomorphism ¢ : 7(%,V) — A such that ¢(z) = a1 and ¢(y) = az. Thus,
we can deduce that a; = ag, which shows that A is of cardinality at most 1.
Conversely, assume that F is non-trivial, and let V be a countably infinite
set of variables. By the first part of the lemma, we have z #g y for every

52 3 Universal Algebra

pair z,y of distinct elements of V. Thus, the cardinality of the quotient
algebra 7(X,V)/~y is greater than 1. In addition, 7(%,V)/~, belongs to
V(E) (as will be shown in the proof of Theorem 3.5.6 below). O

Theorem 3.5.6 Let V be a countably infinite set of variables. The quotient
algebra T (2, V) /ny is the free algebra in V(E) with generating set V/xy :=
{lz]xg | ® € V}. If E is not trivial, then V/x,, is countably infinite.

Proof Since T(X,V) is generated by V, we know that 7(X,V)/~, is gen-
erated by the congruence classes of the elements of V.

In order to prove that 7(X2,V)/~, belongs to V(E), we must show that
every identity s ~ t € E holds in 7(X, V) /~,. Since V is countably infinite,
we may assume without loss of generality that s,t € T'(X,V). Thus, let
¢:T(E,V) - T(2,V)/~y be a homomorphism. By (2) of Lemma 3.5.4,
there exists an endomorphism % of 7(X,V) such that ¢ = mxz9. Now,
s~ t € E implies s =g t, and thus (1) of Lemma 3.5.4 yields ¢(s) =g ¥(¢t),
which shows that ¢(s) = may (¥(8)) = Tayg (Y () = &(2).

Let A be a model of E, and let ¢ : V/~, — A be a mapping. Since
T(%,V) is free with generators V for the class of all ¥-algebras, the mapping
®:V — A:z v ¢(z]~y) can be extended to a homomorphism ¥ :
7(%,V) — A. Because A is a model of E, we know that ~g is contained in

the kernel =5 of this homomorphism. Thus, there exists a homomorphism

Onp : T(E,V)/np — A with 9 = Oxp 7y, by Lemma 3.2.5. In particular,
for all z € X,

Pl[zlxp) = 0(z) = D(@) = Drp (M (3)) = Ve ([e]),

which shows that 9x & extends . This completes the proof that 7 (X, V)/~p
is the free algebra in V(FE) with generating set V/~.

If E is not trivial, then Lemma 3.5.5 implies that the mapping V — V/»,, :
Z +— [z]x~y is a bijection, which shows that V/x, is countably infinite. O

An easy consequence of this theorem is that an identity belongs to ~g iff it
holds in T(X,V)/~p

Corollary 3.5.7 Let V be a countably infinite set of variables, and s,t €
T(2,V). Then T(X,V)/np Es~tiff s=gt.

Proof We have already shown that 7(X,V)/~, € V(E), and thus s ~g ¢
implies that s ~ ¢ holds in 7(X,V)/x-

For the other implication, assume that s =~ ¢ holds in 7(%,V)/x,. In
particular, if we consider the canonical homomorphism 7, : 7(3,V) —
T(2,V)/~g, we obtain ma(8) = may (t), which shows that s ~g t. O

8.5 Equational classes 53

For any subset X of V, the restriction of ~g to T'(X, X) will also be denoted
by ~Eg.

Corollary 3.5.8 The quotient algebra T (X, X)/~y is the free algebra in
V(E) with generating set X/ny, = {[z]xg | * € X}. In particular, the
algebra T(X,0)/~y is the initial algebra in V(E). If E is nontrivial, then
| X| = |X/~gl-

For X C V, Corollary 3.5.7 holds in an appropriately modified version: for
any s,t € T(Z,X) we have T(X,X)/~, E s = tiff s =g t. It should be
noted, however, that for finite sets X, the algebra 7 (X, X)/~, may satisfy
identities s =~ t that contain more than |X| variables and are not satisfied
in 7(X,V)/~p. In particular, the initial algebra in V(E) usually satisfies
identities s = ¢ that contain variables and are not satisfied in the free algebra
in countably many generators.

Example 3.5.9 Let X := {a,b, f} be a signature consisting of two constant
symbols a, b and a binary function symbol f. We consider the set of identities
E = {f(f(z,),2) ~ f(z, {(3,2)), f(a,b) ~ f(b,0)}.

It is easy to see that the commutativity identity f(z,y) =~ f(y,z) holds
in the initial algebra, even though f(z,y) =g f(y,z) does not hold.

In some applications, such as algebraic specification, one is actually more
interested in the identities holding in the initial algebra than in those con-
tained in the equational theory induced by E. Since such identities are often
proved by induction on the structure of ground terms, one calls the set of
these identities an inductive theory.

Definition 3.5.10 Let X be a signature containing at least one constant
symbol, and let E be a set of ¥-identities. The inductive theory induced
by FE is defined as

~L = {(5t) eT(Z, V) xT(Z,V) | T(Z,0)/~s = s = t}.

We have seen that a variety V(FE) defined by a nontrivial set of identities E
contains free algebras with generating sets of arbitrary finite or countably
infinite cardinality. In addition, the free algebra with a countably infinite
generating set satisfies exactly the identities belonging to ~g, whereas a
finitely generated free algebra may satisfy more identities. Now, we shall
show that V(FE) contains free algebras with generating sets of arbitrarily
large infinite cardinality. It is, however, not really necessary to consider
these free algebras since they satisfy the same identities satisfied by the free
algebra with a countably infinite set of generators.

54 8 Universal Algebra

Proposition 3.5.11 Let E be a nontrivial set of identities, and let o be
an uncountable cardinal. The variety V(E) contains a free algebra with
generating set of cardinality o, and this algebra satisfies exactly the identities
n Xg.

Proof Let X be a set of variables of cardinality a. Obviously, any pair
(s,t) € T(Z, X)x T (2, X) can also be considered as the identity s ~ t. Such
an identity s =~ ¢ holds in an algebra A iff ¢(s) = ¢(t) for all homomorphisms
¢:T(X,X) — A. Let us define the relation =g on T'(X, X) by

=g:={(s,t) e T(Z,X) x T(X,X) | s = t holds for all A€ V(E)}.

(1) First, note that =g C T(X, X) x T(X2, X) is just a syntactic variant
of xp CT(X,V) x T(%,V), i.e. every identity in =g can be obtained from
an identity in ~g by renaming of variables, and vice versa. In fact, let
s,t € T(X, X) be terms, and let {z1,...,z,} be the (finite) set of variables
occurring in s and ¢. Since V is countably infinite, it contains at least n
different variables, say vi,...,v,. Let 3, € T(X,V) be the terms that are
obtained from s,t by replacing x; with v; (for ¢ = 1,...,n). Obviously, the
identity s ~ t holds in an algebra A iff § ~ ¢ holds in \A. This implies that
s =g t holds iff § ~g % holds. Similarly, it can be shown that for given
terms s,t € T(X, V) there exist syntactic variants s',t' € T(Z, X) (obtained
by renaming variables) such that an algebra satisfies s =~ t iff it satisfies
s’ ~ t, and thus s’ =g t holds iff s g t holds.

(2) As in the case of a countably infinite set of variables, one can show
the following:

e =g is a fully invariant congruence on 7 (X, X).

e The quotient algebra 7(X,X)/=, is the free algebra in V(E) with
generating set X/=, = {[z]z, | z € X}.

e o= |X|=|X/=,| since E is nontrivial.

o 7(%,X)/=, satisfies exactly the identities in =g.

(3) It remains to be shown that 7(X, X)/=,, satisfies exactly the identities
in ~g. First, assume that 7(%, X)/=, satisfies the identity s ~ ¢ for s,t €
T(%,V). Let ¢/, € T(Z, X) be syntactic variants of s,t (see part (1) of the
proof). Because T (X, X)/=,, satisfies s ~ t, we can deduce that T (X, X)/=,
also satisfies s’ ~ t'. By part (2) of the proof, this implies s’ =g t/, which in
turn implies s ~g t, because s ~ t is a syntactic variant of s’ ~ t'.

Now, assume that s ~g t holds for s,t € T(X,V). Again, we consider
syntactic variants s',t' € T'(Z, X) of s,t. Now, s =g t yields s’ =g t/, and,
by part (2) of the proof, this implies that s’ = ¢’ holds in 7(£, X)/=,. Since

3.5 Equational classes 55

s &~ t is a syntactic variant of s’ ~ t/, we can deduce that 7 (%, X)/=, also
satisfies s ~ t. O

An important theorem due to Birkhoff says that the relation ~g, which
we have defined in this section in a model-theoretic way, coincides with the
syntactically defined relation <> (see Section 3.1). First, we show that <z
is contained in ~g. Obviously, this is an immediate consequence of the next
lemma, since ~g is a fully invariant congruence containing E.

Lemma 3.5.12 The relation < g is the smallest fully invariant congruence
on T(X,V) that contains E.

Proof This lemma is just a reformulation of Theorem 3.1.12, since the
fully invariant congruences on 7 (X, V) are just the equivalence relations on
T(X,V) that are closed under substitutions and Y-operations. O

The other direction of Birkhoff’s Theorem is an immediate consequence of
the next lemma.

Lemma 3.5.13 Any fully invariant congruence = on T(X,V) containing
E contains ~g as well.

Proof It is sufficient to show that the quotient algebra 7(X,V)/= is a
model of E. In fact, if this is the case then s =g t implies that s = ¢ holds
in 7(X,V)/=, and thus the canonical homomorphism 7= satisfies 7=(s) =
=(t), i.e. s = t.

To see that 7(2,V)/= | s =t for every identity s =t € E, recall the
second paragraph of the proof of Theorem 3.5.6, which shows this fact for
~p in place of =. The only property of ~g that is used there is that it is fully
invariant and contains E. In addition, the second statement of Lemma, 3.5.4
is applied. It is, however, easy to see that this statement also holds with =
in place of ~g. O

Thus, we have proved Birkhoff’s Theorem:

Theorem 3.5.14 Let E be a set of identities. The syntactic consequence
relation < E coincides with the semantic consequence relation ~g.

Alternatively, we can say that - and = coincide.

We close this chapter by giving an alternative characterization of varieties
in terms of closure operations. For the interested reader, we include a proof
of the characterization theorem stated below. It should be noted, however,
that this characterization and its proof will not be referred to in any of the

56 8 Universal Algebra

subsequent chapters. Thus, skipping the proof will not cause problems later
on.

Theorem 3.5.15 For a class K of X-algebras, the following statements are
equivalent:

1. K is a variety, i.e. K =YV(E) for a set E of Z-identities.
2. K is closed under building subalgebras, homomorphic images, and direct
products.

Proof (1 = 2) It is quite obvious that an identity s =~ ¢ that holds in an
algebra A also holds in any subalgebra and any homomorphic image of A.
In addition, if s =~ ¢ holds in the algebras A;, for ¢ € I, then it also holds in
the direct product [];c; A;.

(2 = 1) Let K be a class of Y-algebras that is closed under building
subalgebras, homomorphic images, and direct products. Define

E:={(st) eT(Z,V)xT(X,V) | AE s~ tfor all A€ K},

where V is a countably infinite set of variables. It is easy to see that E is a
fully invariant congruence on 7(%,V), and thus we know that E = &g =
~g, by Lemma 3.5.12 and Birkhoff’s Theorem. We claim that K = V(E).
By definition, the algebras in K satisfy all identities in E, which shows that
K CV(E).

To prove the other inclusion, let .4 be an algebra in V(E). We consider
an infinite set W of variables, whose cardinality is not smaller than the
cardinality of A. Since identities contain only finitely many variables, the
relation

=:={(s,t) e T(E,W)x T(Z,W) | Bl st for all Be K}

on T'(X, W) is just a syntactic variant of the relation F = ~g (see the proof
of Proposition 3.5.11). In particular, = is a fully invariant congruence on
T(X,W), and V(E) is the class of algebras that satisfy all identities s ~ ¢
with s = ¢.

Before we can prove that A € K, we need to show that 7 (X, W)/= belongs
to K. By definition of =, a tuple (s,t) belongs to = iff all B € K and all
homomorphisms ¢ : 7 (£, W) — B satisfy ¢(s) = ¢(t). Thus, if =g 4 denotes
the kernel of ¢ : T(X,W) — B, then = = (\gek, ¢ =B, (where, for every
B, ¢ ranges over all homomorphisms 7(2, W) — B). By Lemma 3.2.5,
the image ¢(7 (X, W)) of 7 (X, W) under ¢ is isomorphic to 7 (X, W)/=, ,.
Since this image is a subalgebra of B € K, we can deduce that 7(X, W)/=,,
belongs to K. Now, let ¢ be the homomorphism of 7 (X, W) into the product

3.5 Equational classes 57

[lsek,p T (X, W) /=g, that maps every term ¢ into the tuple consisting of
its =p 4-classes. It is easy to see that the kernel of this homomorphism
is = = Ngek,4 =B,¢, Which shows that 7 (X, W)/= is a subalgebra of the
product (Lemma 3.2.5). Since every component of the product is in X, the
product itself and all its subalgebras are in K.

Since T7(X,W)/= € K and K is closed under building homomorphic im-
ages, we can conclude the proof of the theorem by showing that the algebra
A is a homomorphic image of 7 (X, W)/=. Since the cardinality of W is at
least as large as the cardinality of A, there is a mapping ¢ of W onto A. As
in the third paragraph of the proof of Theorem 3.5.6 we can show that there
exists a homomorphism ¢ : 7 (X, W)/= — A that satisfies ¢([z]=) = ().
Since ¥ is onto, this homomorphism is also onto. |

Exercises
313 Let G i= {f(z,f(1,2) ~ f(f(z,1),2), f(es7) ~ x, f(=,i(x)) ~ e}.
Show that f(z,e) ~q x does not hold. (Hint: construct a model of
G’ in which the identity f(z,e) ~ x is not satisfied.)
3.14 Let X := {f} for a binary function symbol f, and

Consider the Y-algebra N that has N x N x N — {(0,0,0)} as carrier
set, and which interprets f as component-wise addition. Show that
N is the free algebra in V(AC) with a generating set of cardinality 3.

3.15 Let X consist of the binary function symbol h and the unary function
symbols g1, g2, and consider the set of identities

E = {h(g1(z), g2(x)) = z, g1(h(z,y)) = =, g2(h(z,y)) = y}.

Show that F has an infinite model, and that g;(z) =g g2(z) does not
hold. (Hint: take a countably infinite carrier set A, and interpret h
as a bijection of A x A into A.)

3.16 The purpose of this exercise is to show that the converse of The-
orem 3.3.3 need not hold, even if K is a variety defined by a nontri-
vial set of identities. Let ¥ and E be as in Exercise 3.15, and let
A = T(Z,{z})/~y be the free algebra in V(E) with generating set
{[z]~z}- Show that [g1(2)]~y # [92(z)]~y, and that A is free in V(E)
with generating set {[91()]~g, [92(2)]~5}-

4

Equational Problems

This chapter deals with the central problems of equational reasoning: va-
lidity and satisfiability of equations. Given a set of identities £ and an
equation s ~ t, we say that s ~ t is

valid in F iff s =g t, and
satisfiable in F iff there is a substitution o such that o(s) =g o(t).

Instead of “s =~ t is valid in E” we also say “s ~g t is valid”, and similarly
for satisfiable. Both questions turn out to be undecidable for arbitrary E.

The main topics of this chapter are the following methods for solving
special cases of equational problems:

1. term rewriting decides ~g if — g is convergent.
2. congruence closure decides ~g if E is variable-free.
3. syntactic unification computes o such that o(s) = o(t).

All three methods are of great practical importance. We pay particular
attention to efficient implementations of congruence closure and syntactic
unification, which also benefits term rewriting, because the latter is based
on a special case of syntactic unification.

To see that validity and satisfiability are closely related, we briefly consider
their interpretation in first-order logic. The equation s ~ t is valid in E iff
the formula VZ. s ~ t, where T are the variables in s and ¢, holds in all
models of E. This is just the definition of ~g. Dually we have that s ~ ¢
is satisfiable in E iff 3Z. s ~ ¢ holds in all nonempty models of E. The <-
direction follows from Corollary 3.5.7 because 7 (X,V)/~y is a nonempty
model of E. For the =-direction assume o(s) ~g o(t) and let A be a
nonempty model of E. Since A = E, we know that A |= o(s) = o(t), and
since A is nonempty, there exists a homomorphism ¢ : 7(X,V) — A. Thus

58

4.1 Deciding ~g 59

we have ¢(o(s)) = ¢(o(t)), which yields the required witnesses for 3z. s ~ ¢:
for each variable z in s or t, take ¢(o(x)).

In the sequel, we work with fixed ¥ and V. The term f(s1,...,58,) is
sometimes written f(35).

Recall that the syntactic and the semantic view of equational logic (&g
and ~g) coincide (Birkhoff’s Theorem). We shall use them interchangeably.

4.1 Deciding ~g

From Theorem 2.1.9 it follows that <> is decidable if —g is convergent,
provided we can effectively compute |g. For this purpose it is essential
that we can decide if one term (the term to be reduced) is an instance of
another term (the lhs of an identity in E). This is also called the matching
problem: given two terms s and [, determine if there exists a substitution
o such that o(l) = s, and compute o if it exists. At the end of Section 4.6
we show that matching and satisfiability problems are closely related. A
linear time algorithm for matching is the subject of Exercise 4.24.

Theorem 4.1.1 If E is finite and — g is convergent, then =<g is decidable.

Proof Theorem 2.1.9 tells us that s <> t iff s| 5 = t| 5. The normal form
operator | is computable because we can

1. decide if a term w is already in normal form (w.r.t. —g) and
2. compute some u’ such that u —g v’ if u is not in normal form.

To decide if u is already in normal form, it suffices to check for all identities
(I = r) € E and all positions p € Pos(u) if there is a substitution ¢ such
that u|, = ol. Since the matching problem is decidable and there are only
finitely many identities and positions, either we find that « is already in
normal form or we can reduce u to u[or], and iterate the process. This
iteration must eventually terminate because — g is terminating. |

This is the key result that explains the importance of convergent reductions.
In general, things are not so rosy: there are finite sets E such that s ~g ¢
is undecidable, even if s and ¢ are ground terms.

Definition 4.1.2 The word problem for F is the problem of deciding
s =g t for arbitrary s,t € T(X,V). The ground word problem for E is
the word problem restricted to ground terms s and ¢.

We stress that the ground word problem covers only ground terms over
the given signature X. If we were allowed to use additional free constants,
they could take the place of variables and we would be back to the general

60 4 FEquational Problems

word problem. Formally: s =g t & o(s) =g o(t), where o is injective
and VRan(o) is a set of constants disjoint from ¥. Two classic examples of
undecidable ground word problems follow.

Example 4.1.3 Combinatory logic is one of the earliest formalisms
for encoding all computable functions. It is based on the signature ¥ =
{,S,K}, where - is a binary infix function and S and K are constants.
Computations in this system are described by the identities

E:={((§2)y)-2~(z-2) (y-2), (K-2) y~z}

Any program can be encoded as a ground term over X, which causes the
undecidability of the word problem for E [62].

Example 4.1.4 Fig. 4.1 shows a finitely presented semigroup with unde-
cidable ground word problem due to Matijasevi¢ [170]. In the terminology
of this book we have one binary infix function - and two constants a and b,
together with the identities in Fig. 4.1. For readability = -y and z---x are
written xy and x™. Associativity allows us to drop brackets.

(zy)z =~ x(y2)
aba?b? =~ b2a%ba
a’bab’a =~ b2a3ba
abadh? =~ ab’aba?
b3a2b2a%ba ~ b3ab2a?
a*b?a?ba =~ b2at

Fig. 4.1. A finitely presented semigroup with undecidable ground word problem.

We can recast this example in terms of unary function symbols only:
drop “-” and the associativity rule, turn a and b into unary functions, and
interpret an identity like ab ~ ba as a(b(z)) =~ b(a(z)). Because there are no
ground terms, this only yields the undecidability of the word problem.

Obviously the word problem for F is undecidable if the ground word problem
is. The converse does not hold in general.

Exercises

4.1 Give a trivial example of a finite set of identities E such that the
ground word problem for F is decidable but the word problem is not.

4.2 Show that the word problem for F is decidable if all ~g-equivalence
classes are finite.

4.2 Term rewriting systems 61
4.3 Show that ~p, equality modulo distributivity, is decidable.
D:={z+x(y+2)=(z*xy)+(r*x2), (z+y)*xz=(z*x2)+ (y*2)}.

4.2 Term rewriting systems

The previous section has shown the importance of — g, i.e. of using equations
from left to right only. Thus we have finally arrived at the main topic of this
book, term rewriting. It comes with its own terminology, which emphasizes
the left-to-right replacement process:

Definition 4.2.1 A rewrite rule is an identity [=~ r such that [is not a
variable and Var(l) 2 Var(r). In this case we may write [— r instead of
I ~r. A term rewriting system (TRS) is a set of rewrite rules. Unless
noted otherwise, R is always a TRS.

A redex (reducible expression) is an instance of the lhs of a rewrite rule.
Contracting the redex means replacing it with the corresponding instance
of the rhs of the rule.

The two restrictions that distinguish a rewrite rule from an identity avoid
certain pathological cases and obvious sources of nontermination. Much
of term rewriting theory carries over to arbitrary identities with only mi-
nor modifications. In the interest of compatibility this book sticks to the
standard definition that requires the above restrictions.

Since any TRS R is in particular a set of identities, the notation — g,
the rewrite relation induced by R, is well-defined. We also take the liberty
of saying that R is terminating, confluent, convergent, etc., if —g has the
corresponding properties. We simply write — instead of — g if R is obvious
from the context.

Because termination of — g requires E to be a TRS (why?), we can re-
formulate Theorem 4.1.1 as follows:

If R is a finite convergent TRS, ~p is decidable: s ~<gpt < s|lgp =1t|p.
Let us now examine some basic properties of —g.

Definition 4.2.2 A relation on 7'(X,V) is a rewrite relation iff it is
compatible with Y-operations and closed under substitutions.

Lemma 3.1.10 states that — g is a rewrite relation. It is a simple exercise to
show that — g is in fact the least rewrite relation containing R. By induction
on the length of derivations one can furthermore show that relatives of —p
like g, 5 r and &g are also rewrite relations. The case of < g is already
covered by Theorem 3.1.12.

62 4 FEquational Problems

Recall that, by Lemma 3.1.11, — g and its relatives are compatible not just
with Y-operations but also with X-contexts. Compatibility with contexts
and closure under substitution are very basic properties, which is why we
shall rarely refer to them explicitly.

This concludes our initial exposition of term rewriting systems. With
the exception of Section 4.7, which presents, almost as a by-product, an
implementation of term rewriting, the remainder of the chapter returns to
validity and satisfiability of equations. The in-depth study of term rewriting
is the subject of the following chapters.

Exercises

4.4 Show that if (I = r) € E and Var(l) 2 Var(r) does not hold, then E
is nonterminating.

4.5 Show that —pg is the least rewrite relation containing R. (Hint: see
the proof of Theorem 3.1.12.)

4.3 Congruence closure

Although ~g is undecidable for arbitrary F, there is an important subclass
for which it is decidable: if E is finite and contains no variables.

Definition 4.3.1 An identity [=~ r is a ground identity if it contains no
variables, i.e. Var(l) = Var(r) = 0.

While studying congruence closure, G always denotes a set of ground iden-
tities. In this case, instantiation is redundant (see Exercise 4.6). Hence it
follows from Theorem 3.1.12 that = is just the congruence closure of G,
i.e. the least congruence on T'(X, V) containing G.

A more operational description of congruence closure is based on a func-
tional version of the rules of equational logic:

R(E) = {1 |teT(EV)}
S(E) = {(ts)](s,t) € E},
T(E) = {(s,u) |3t (s,1),(t,u) € B},

C(E) = {(f(%),f(i;)) | f € Z(n) A (Slatl)a') (Sn,tn) € E}

We say that a set A is closed under a function F' from sets to sets if
F(A) C A. As observed above, =~ is the least congruence, i.e. set closed
under R, S, T and C, that contains G. Defining

Cong(E) := E U R(E) U S(E) UT(E) UC(E)

4.8 Congruence closure 63

we find that G is a congruence iff it is closed under Cong. Monotonicity of
R, S, T and C implies monotonicity of Cong:

Lemma 4.3.2 FE; C Ey = Cong(E1) C Cong(Ez).
The process of closing G under Cong is an iteration from below:

Go = G,
Giy1 = Cong(Gj).

It follows easily that CC(G) := U;>o G is indeed the congruence closure:
Lemma 4.3.3 CC(G) = =g.

Proof (C) We show by induction on ¢ that G; C ~g. For i = 0 this is
trivial. If G; C =g then monotonicity of Cong and the fact that ~q is a
congruence imply G;11 = Cong(G;) C Cong(=~q) = ~g.

(2) First note that CC(G) is a congruence because it is closed under
Cong, which can be seen by checking R, S, T and C in turn: for example, if
(s,t), (t,u) € CC(G), i.e. (s,t) € G; and (t,u) € G, for suitable 7 and j, take
k := maz(i, j) to obtain (s,t), (t,u) € Gy and hence (s,u) € Gx+1 C CC(G).
Since CC(G) also contains G it must contain ~g, the least congruence
containing G. O

Unfortunately, CC(G) is in general infinite. For example, given two con-
stants a and b and a unary function f, CC({a = b}) contains all identities
fi(a) = fi(b) (recall that fi(t) abbreviates f(f(...f(t)...))). We can easily
determine that f2(a) ~¢ f?(b) when we find this identity in G2, but how
can we conclude that f2(a) %¢ f3(b)? Do we need to examine all G;? It
turns out that because G is ground, the search space is finite: we need to
consider only those terms that occur in G or in the input terms to be tested
for equivalence.

Given a term t, let Subterms(t) denote the (not necessarily proper) sub-
terms of ¢:

Subterms(t) := {t|p | p € Pos(t)}.
This extends to a set of identities E as follows:
Subterms(E) := U (Subterms(l) U Subterms(r)).
(I~r)eE

In the sequel, we fix a finite set of ground identities G and two terms s
and t and define S := Subterms(G) U Subterms(s) U Subterms(t), again a
finite set. We will decide s =g t by restricting our attention to S.

64 4 FEquational Problems
Starting with G, we define the sequence

Hy = G,
Hi+1 = Cong(Hz)ﬂ(SxS)

By definition we have H; C S x S. Monotonicity of Cong implies H; C H;4;.
Since S x S is finite, the sequence must eventually converge:

Lemma 4.3.4 There is some m such that Hyp+1 = Hp,.

The limit H,, is denoted by CCs(G). Although CCg(G) is transitive and
symmetric, it is reflexive only for terms in S and hence it is not a congruence.
For example, if G = {a = b}, s = f(a), t = b then S = {a,b, f(a)},
Hi =GU{a=~ab=rb, f(a) =~ f(a),b =~ a} and Hy = H;. Nevertheless,
CCs(G) is just what we need:

Theorem 4.3.5 CCs(G) = =gN (S xS).

Proof Because by definition H; C G; N (S x S), we also have CCs(G) C
CC(G)N(SxS). Conversely, assume u,v € S and u <% v. We prove (u,v) €
H,,, the limit of the H;, by well-founded induction on the lexicographically
ordered pair (n, |ul).

If n =0, then v = v and hence (u,v) € H; C Hp,.

Ifu HZH v, we distinguish two cases:

(1) There is a rewrite step at the root, i.e. u =g | &g r —F v for
some [~ r € GUG™L. Note that because G is ground, no substitutions are
involved. Since m1,n2 < n and [, € S, the induction hypothesis implies
(u,l) € Hp, and (r,v) € Hyp,. The pair (I,r) is either in Hy or, because of
symmetry, in H; and hence in Hy,. Transitivity of Hy, implies (u,v) € Hp,.

(2) There is no rewrite step at the root, i.e. u = f(ug), v = f(vx) and
u; > v; for all 1 <4 < k. Since n; < n+1, || < |u|, and u;,v; € S, the
induction hypothesis yields (u;,v;) € Hp, for all i. It follows by congruence
that (u,v) € Hpt1 = Hp. O

Since CCs(@) is computable (simply enumerate the H; until you reach the
stable point Hp,), we can decide u ~g v for all u,v € S, in particular for s
and t.

Corollary 4.3.6 The word problem for finite sets of ground identities is
decidable.

Since CCs(G) decides u =g v for all u,v € S, we could have started not
just with a single pair s and ¢, but with any finite set of terms U, in which
case CCg(@G) decides =¢ for all terms in U.

4.4 Congruence closure on graphs 65

Lemma 4.3.7 The time complexity of the above decision algorithm is poly-
nomial in the size of the input, namely G, s and t.

Proof Let n be the size of the input. The cardinality of S is O(n). Hence
the cardinalities of S x S and each H; are O(n?), and so is m. Each step
from H; to H;41 takes polynomial time. For example, computation of T'(H;)
is of order n®°: one iteration over H; for each premise (n? - n2), and a linear
equality test for the term in the middle. O

Example 4.3.8 Let ¥ := {f,a} and G := {f3(a) = a, f?(a) = a}, S :=
{fi(a) | 0 < i < 3} and assume s,t € S. CCg(G) can be computed in three

steps. To keep matters readable, reflexive identities are shown as “...”:

Hy = {fa)~a,f*(a)~a},

H = HoU{a= f3a),a f*(a), f3(a) = f(a),...},

Hy = H1U{f(a) = f*(a), f*(a) = f*(a), f*(a) =~ f*(a),a ~ f(a)},
Hy = H,U{f(a) ~a,f(a)~ f*(a), *(a) ~ f(a)}.

Note that Hs = S x S, at which point the iteration stops. In general, the
iteration may stop before S x S is reached, i.e. not all terms are identified.

So why does congruence closure fail for non-ground identities?

Example 4.3.9 Let E := {f(f(z)) = g(z)}. Then every derivation of
f(9(a)) =g 9(f(a)), for example f(g(a)) =& f(f(f(a))) =& 9(f(a)), invol-

ves a “detour”, i.e. a term not in S.

Exercise

4.6 Show that if G is a set of ground identities, then instantiation is
redundant: if G F s = t then there is a proof of G I s =~ t that does
not involve instantiation.

4.4 Congruence closure on graphs

In order to obtain an efficient version of the above congruence closure algo-
rithm we represent terms as directed acyclic graphs. This allows for shared
subterms, but not for cycles. For example, f(g(a),g(a)) can have the three
different representations shown in Fig. 4.2. Unless we explicitly say so, we
do not assume that the graph representation is maximally shared (as in (3))
or even shared at all. In fact, the congruence closure algorithm below can
transform (1) via (2) into (3).

66 4 Equational Problems

2) (

w

)

Fig. 4.2. Three term graphs for f(g(a), g(a)).

For each node u of the graph the following functions are defined:

label(u) the function symbol attached to u,
6(u) the number of successors of u,
uli] ith successor of u for i =1,...,6(u).

We assume that label(u) = label(v) implies §(u) = §(v) and call such graphs
term graphs. The term represented by a node u in a term graph is defined
by

term(u) := label(u)(term(u[l]),. .., term(u[é(u)])).

The details of representing term graphs as pointer structures in an impera-
tive programming language can be found in Section 4.8.

A relation ~ on the nodes of a term graph is a congruence if it is an
equivalence and if for all nodes u and v with label(u) = label(v)

(V1 < i< é(u). ufi] ~v[i]) = u~w.

The congruence closure of ~, denoted by ~© | is the smallest congruence
containing ~.

The congruence closure of a relation on a term graph is a compact rep-
resentation of CCg(G) defined earlier: the terms in S correspond to the
nodes of the graph, G corresponds to ~ and CCg(G) corresponds to ~“C.
The correspondence between CCg(G) and ~©C hinges on the fact that the
definition of CCg(G) includes an intersection with S x S while the same
effect is achieved in the definition of ~¢C by talking about a fixed graph
whose nodes correspond to S. Thus we have the following relationship:

Fact 4.4.1 (s1,s2) € CCs(G) iff there is (u1,u2) € ~CC gsuch that s; =
term(u;), ¢ =1,2.

In the sequel, we work directly on the graph representation.
As a first application that utilizes the graph view, consider what happens
when we compute the congruence closure of the empty relation, for example

4.4 Congruence closure on graphs 67

on the graph (1) in Fig. 4.2. Because the two nodes labelled a have no suc-
cessors, all their successors are related and thus those two nodes must be in
the congruence closure. But now the two nodes labelled g must also be in
the congruence closure, because their successors are. At this point we have
identified all isomorphic subgraphs and the process stops. Collapsing those
isomorphic subgraphs in Fig. 4.2 transforms (1) into (3). Hence a congru-
ence closure algorithm can be used to eliminate common subexpressions, for
example in optimizing compilers.
In general we have

Lemma 4.4.2 Let ~ be a congruence. Then u ~ v if u and v are the roots
of isomorphic subgraphs.

Proof by induction on the structure of term(u) = term(v). O

In particular B°C identifies two nodes iff they represent the same terms.

The congruence closure algorithm is essentially a computation on equiva-
lence classes of nodes. We need the test whether two nodes are equivalent,
i.e. if u ~ v, and a procedure Union(u,v) for merging the equivalence class
of v with the one of v. Note that we are now in an imperative world: we
operate on a single graph and Union updates the equivalence relation ~ on
the nodes of that graph.

Because it is good software engineering practice to decouple system lay-
ers, our description of the congruence closure algorithm only assumes the
existence of ~ and Union with certain properties, without relying on a par-
ticular implementation. The latter is provided later on.

For each node u let preds(u) be the set of all predecessors of all nodes
equivalent to u:

preds(u) = {v |31 <1i<§(v). v[i] ~ u}.
We also define an auxiliary predicate congruent:

congruent(p,q) := (label(p) = label(q)) N V1 < i< 8(p). pli] ~ qli].

Note that congruent(p, q) implies p ~CC .

The key component in the congruence closure algorithm is procedure
merge shown in Fig. 4.3.

Starting from a congruence, merge(u,v) adds (u,v) and again closes the
relation under congruence:

Theorem 4.4.3 If R is closed under congruence and ~ = R before the
ezecution of merge(u,v), then ~ = (RU {(u,v)})°C afterwards.

68 4 Equational Problems

procedure merge(u,v);
begin if u ot v then
begin P := preds(u); Q := preds(v);
Union(u,v);
for all (p,q) € P x Q do
if p ¢ q and congruent(p,q) then merge(p,q)
end
end;

Fig. 4.3. Procedure merge.

Proof Soundness of merge is easy: ~ C (RU{(u,v)})°C is invariant during
the execution of merge(u,v) because Union(p,q) is called only if (p,q) =
(u,v) or if congruent(p, q). In both cases it means (p, q) € (RU{(u,v)})¢C.

Completeness of merge is proved by recourse to the inductive nature of
(.)¢C. Although we did not spell this out at the time, (.)°C can be defined
completely analogously to CCg(.). Thus we obtain (R U {(u,v)})¢C as the
stable point of the sequence Ry := RU {(u,v)}, Ri+1 := Cong(R;). Cong
on the nodes of a graph is defined analogously to its counterpart on terms,
except that we never create new terms but work with a fixed set of nodes.
Now let ~g := R and let ~;, i > 0, be the state of the equivalence after the
ith call to Union during the execution of merge(u,v). We prove by induction
on ¢ that

v/, o (W, 0') € Ry = Fj. U~y 0

For ¢ = 0 take j := 1, i.e. the state after the initial call Union(u,v).

For the induction step assume (v/,v') € R;4+1 = Cong(R;). If (v/,7') is the
result of reflexivity, symmetry or transitivity, the proof is routine because
each ~; is an equivalence. We concentrate on closure under congruence, i.e.
we assume label(u') = label(v') and (W/[l],v'[l]) € R; for | = 1,...,6().
Let K := {k | (W[k],v'[k]) ¢ R}. If K = 0 then (v/,v') € R because R
is a congruence. Therefore v/ ~¢ v/. If K # () then there must be some
point in the computation and some k such that u'[k] ;1 v'[k] before a call
Union(u”,v") and /[l] ~; o/[l] for all | afterwards. But this means that
U'[k] ~j—1 v and V'[k] ~j_q V", ie. (W,V') € preds(u”) x preds(v”). Thus
either merge(u’,7') is called later on or «’' ~ v’ is achieved beforehand, in
which case the guard if p ¢ ¢ suppresses the superfluous call. O

Thus we have proved partial correctness of merge. Termination is obvious:
every call merge(u,v) either terminates immediately (if u ~ v) or decreases
the number of equivalence classes by one (if u % v).

To compute the congruence closure of R = {(ug, vp), . .., (Un, Vn)} We start

4.4 Congruence closure on graphs 69

with the relation f€C and execute merge(ug,vo); . . .; merge(un,v,). Itera-
ting Theorem 4.4.3 proves that at the end ~ = RCC. This leaves us with
the small problem of generating the initial relation #¢C, i.e. identifying all
common subgraphs. This can be accomplished very elegantly by identifying
all constants with the same label and letting merge propagate these identi-
fications up the tree (see Exercise 4.8).

Before we look at an example, we have to discuss the implementation of
equivalence classes. The following is a short summary of the Union/Find
implementation found in most books on algorithms [3]. Equivalence classes
are represented by sets of (converse) trees, where each child is linked to its
parent. Each tree represents an equivalence class. For example, the partition
{{u1, u2,u3}, {us,us}, {ue}} can be represented as follows:

IS

U 4 Us
o~

>

S____

us us 5
Note that we always use dashed arrows in Union/Find-trees in order to
distinguish them from the arrows of the term graphs.

There are two operations on nodes:

Find(u) returns the root of the tree u belongs to. For example, Find(u3) =
uy and Find(us) = ug. As a side effect, Find also compresses the
path between u and the root by making all the nodes on that path
point directly to the root. This speeds up subsequent calls of Find.

Union(u,v) finds the roots of the trees v and v belong to and creates a link
from the smaller tree to the larger one, thus increasing the length
of the path to the root for fewer nodes. For example, Union(ug,ug)
creates a link from ug to uq.

The implementation of Union and Find is routine. Based on it we define
u~wv = (Find(u) = Find(v)).

Example 4.4.4 We come back to G = {f3(a) = a, f%(a) =~ a} from
Example 4.3.8. The initial graph containing f3(a), f2(a), f(a) and a is
shown in Fig. 4.4, as are all further steps of the algorithm. We start with a
fully shared graph.

The result of merging the nodes corresponding to f3(a) and a is shown in
the next graph. Since f3(a) has no predecessor, nothing much happens.

The final graph shows the result of merging f%(a) and a as well. Before
Union(f%(a), a) is executed we have preds(f?(a)) = {f3(a)} and preds(a) =

70 4 Equational Problems

@ =@

Fig. 4.4. Initial graph, after merge(f3(a), a), and after merge(f2(a), a).

I |

r
I
v
1

{f(a)}. This causes a recursive call merge(f3(a), f(a)) which in turn leads
to Union(f3(a), f(a)) which creates an arrow from Find(f(a)) = f(a) to
Find(f3(a)) = a. In the end, all nodes are equivalent to a.

The above congruence closure algorithm is due to Nelson and Oppen [184]
who prove that O(n) top-level calls of merge take time O(m?2), where m is
the number of edges and n < m the number of nodes of the initial graph.
This requires a fast implementation of preds. First note that u ~ v implies
preds(u) = preds(v). Hence it suffices to compute preds once for each
equivalence class and attach it to the root of the class. (At this point we
start to rely on the representation of equivalence classes.) Now Union needs
to combine the attached preds sets as well. If they are represented as linked
lists without duplicates, they can be merged in time proportional to the
sum of their lengths, provided they are sorted w.r.t. some arbitrary but
fixed order on the nodes.

Note that the initial identification of common subgraphs sketched above
is included in O(m?). Identifying all constants and variables with the same
label takes time O(m log n) (see Subsection 4.8.3), which does not add
anything to O(m?). Since there are at most n variables and constants,
this can only lead to O(n) calls to merge.

Exercises
47 Let £ = {f,a} and G := {f°(a) =~ a, f3(a) ~ a}. Prove f(a) ~g a
using congruence closure both on sets of identities and on graphs.

4.8 Assume initially ~ is empty. Show that calling merge(u,v) for all
nodes u and v such that label(u) = label(v) and 6(u) = 6(v) = 0
identifies all isomorphic subgraphs: at the end, term(u) = term(v)
implies u ~ v for all nodes u and v.

4.5 Syntactic unification 71

4.9 Implement congruence closure in your favourite programming lan-
guage.

4.5 Syntactic unification

Unification is the process of solving the satisfiability problem: given E, s
and t, find a substitution o such that os =g ot. If s and t are ground, uni-
fication degenerates to solving the ground word problem. Because the latter
is undecidable, so is unification. Therefore this chapter concentrates on the
special case E = () which is both theoretically interesting and practically
important, as it is the heart of many symbolic computation algorithms, in
particular interpreters for the programming language Prolog and the con-
fluence tests based on critical pairs in Chapter 6. This case is also known as
“syntactic unification” because we try to find o such that os = ot, i.e. os
and ot are syntactically identical (recall that s gt < s=tif E=0). In
this case o is called a unifier of s and ¢ or a solution of the equation s = ¢.

Let us look at some simple examples to get an idea of the different facets
of the problem:

f(x) =" f(a) has exactly one unifier {z — a}.

z =" f(y) has many unifiers: {z — f(y)}, {x — f(a),y+—a},
f(z) =" g(y) has no unifier.

z =" f(z) has no unifier.

None of these is terribly surprising (except maybe the last one) but it shows
that equations may have zero, one or more solutions. However, some soluti-
ons are better than others: {x — f(y)} is a more general unifier of z =7 f(y)
than {z — f(a),y — a}. In fact, {x — f(y)} is a most general unifier of
z =" f(y): all other unifiers are instances of it.

Definition 4.5.1 A substitution ¢ is more general than a substitution ¢’
if there is a substitution § such that ¢’ = §o. In this case we write o < o’.
We also say that ¢’ is an instance of o.

Ifo={z— f(y)} and o’ = {z — f(a),y — a} then o < ¢’ because ¢’ = §o
where § = {y — a}. You can easily check ¢/ = §o: o/(z) = f(a) = 6(o(x)),
o' (y) =a=6(c(y)) and ¢'(z) = z = 6(o(z)) for all other variables z.

Lemma 4.5.2 The relation < on substitutions is a quasi-order.

Proof Reflexivity is trivial: simply let 6 be the identity. For transitivity
suppose o2 = 510’1 and g3 = 5202. Thus g3 = 520'2 = 52(510'1) = (5251)0'1
because composition of substitutions is associative. O

72 4 Equational Problems

We write o ~ ¢’ if 0 < 0o and o 2 ¢/, as is customary for quasi-orders.

As the symbol indicates, < is not antisymmetric. For example, let o =
{z — y} and ¢/ = {y — z}. Then o < ¢’ because ¢/ = 0’0, and o 2 ¢’
because 0 = oo’. This situation can be made more precise using the notion
of a renaming, an injective substitution p such that Ran(p) C V,ie. pis
a bijection on V' (because Dom(p) is finite) and hence also on T'(%, V).

Lemma 4.5.3 0 ~ ¢/ < ZJrenaming p. o = po’.

The proof is left as an exercise.
Now we generalize our setting slightly by solving sets of equations.

Definition 4.5.4 A unification problem is a finite set of equations S =
{s1 =" t1,...,8, =" ty}. A unifier or solution of S is a substitution &
such that os; = ot; for i = 1,...,n. U(S) denotes the set of all unifiers of
S. S is unifiable if U(S) # 0.

A substitution o is a most general unifier (mgu) of S if o is a least
element of U(S):

e 0 €U(S) and
e Vo' eU(S). o SO

Example 4.5.5 It is easy to check that o := {x > y} is an mgu of z =7 y.
Given any unifier 0, o < 0 because 0 = fo: 0z = 0y = oz, Oy = oy, and
0z = Goz for all other variables z.
Certain other consequences of the above definition of mgu are less obvious.
1. o' := {x — 2,y ~— 2z} is a unifier of z =" y, but not an mgu: o = {z — y}
is not an instance of ¢’ because {z — y}o’ is {z — y,z — y} but not
o. There are more complex definitions of mgu (see Chapter 10) that
take into account that o and {z — y}o’ only differ on variables (z) not
present in the unification problem. For the time being we prefer the
simpler definition.
2. 0" == {x > y,21 — 22,20 — 21} is an mgu of z =7 y because o, and
hence any other unifier, is an instance of ¢”: o = {21 — 22,22 — 21}0”.

The second point can be ruled out by restricting to certain well-behaved
substitutions:

Definition 4.5.6 A substitution o is idempotent if 0 = oo.

Clearly ¢” above is not idempotent because, for example, 0”(z1) = 29
whereas 0”(0”(21)) = z1. Non-idempotent substitutions can be very cum-
bersome to work with. They can be spotted very easily:

Lemma 4.5.7 A substitution o is idempotent iff Dom(c) N VRan(o) = 0.

4.6 Unification by transformation 73

The proof is left as an exercise.
Section 4.6 yields an algorithmic proof of the following key theorem:

Theorem 4.5.8 If a unification problem S has a solution then it has an
idempotent mgu.

Lemma 4.5.3 tells us that mgus are unique only up to renaming. Even
idempotent mgus are not unique. For example both {z — y} and {y — z}
are idempotent mgus of z = y.

Exercises

4.10 Prove Lemmas 4.5.3 and 4.5.7.

4.11 Show that if o < ¢/ then 06 < ¢’0. Does o < ¢’ imply 6o < 60’7

4.12 Show that if Dom(c) N Dom(o’) = ® and Dom (o) N VRan(d') = 0,
then oo’ = o U7’

4.13 Does o C ¢’ always imply o < 0’7 Prove that the implication holds
if o’ is idempotent.

4.14 Prove that if s = o’s then o and ¢’ coincide on Var(s).

4.15 Show that if o is an idempotent mgu of S then V6. 8 € U(S) < 6 = fo.

4.6 Unification by transformation

Unification can be expressed as a repeated transformation of a set of equa-
tions until the solution stares you in the face. In fact, it is very reminiscent
of solving systems of linear equations by Gaussian elimination, as in the
following example:

z+3y =0 - z+3y=0 - z+3y=0
2z 4+ 8y = 2z 2y = 2z =2z
z+3z2=0 T = -3z
> la%s
y==z y==z

We leave it to the reader to compare the individual steps of Gaussian elimi-
nation and the transformations below.

Definition 4.6.1 A unification problem S = {z; ="t Ly =T tn} isin
solved form if the z; are pairwise distinct variables, none of which occurs
in any of the ¢;. In this case we define

S = {1 —t1,...,2n — tp}.

74 4 Equational Problems
Lemma 4.6.2 If S is in solved form then o = oS for all o € U(S).

Proof Let S = {z; ="t 2 =T tn}. We show by case distinction that
o and ¢S behave the same on all variables, i.e. Vz € V. oz = 0Sx:

1. z €{z1,...,20}, e.8. T = zp: 0% = oty = oSz (because o € U(S)).
2. z&{z1,...,2pn}: 0T = oSz (because Sz = x). O

Lemma 4.6.3 If S is in solved form then S is an idempotent mgu of S.

Proof Idempotence follows directly from Lemma 4.5.7 because none of the x;
occurs in the ;. For the same reason we have Sz; = t; = St;, i.e. S € U(S).
Finally, S is an mgu because S < o for all 0 € U(S) by Lemma 4.6.2. [

Thus we know how to extract an idempotent mgu once we have reached a
solved form. In order to get there we employ the following transformation
rules:

Delete {t="t}w s = S

Decompose {f(t,) =’ f(@n)}WS = {t1 ="w1,...,tn = up}US
Orient {t="z}wSs = {z="t}usS iftgV
Eliminate {r="t}wS = {z="t}u{z—t}(S)

if z € Var(S) — Var(t)

The application of a substitution to S means its application to both sides
of all equations in S. The symbol W denotes disjoint union. This enforces
that the particular equation selected by the left-hand side is removed from
set of equations (although Eliminate reinserts it). The individual rules are
easy to grasp:

Delete deletes trivial equations.

Decompose replaces equations between terms by equations between their
subterms.

Orient moves variables to the left-hand side.

Eliminate broadcasts solutions, thereby eliminating the solved variable in
the remaining part of the problem.

Dropping the side conditions can cause looping. For example x € Var(t) in
Eliminate has the following consequence:

=" f@), ...a..} = {&="{(@), ... f(@).. }

4.6 Unification by transformation 75

Example 4.6.4 The following sequence of transformations illustrates the
workings of the above rules:

{z = =’ f(a), g(z,x) =! 9(z,y)} == Eliminate
{z =° f(a) 9(f(a), f() =! 9(f(a),y)} == Decompose
{z= f(a)a f(a) =’ f(a), f(a) =" y} = Delete
{z= " f(a), f(a) Ty} ==Orient
{z =" f(a), y=" f(a)}.

Note that the choice of rules is nondeterministic. We could start with De-
compose instead of Eliminate. Would this lead to a different solved form?

The solved form we end up with yields an mgu {z — f(a),y — f(a)} for
our initial unification problem. This is not a coincidence. We claim that the
following function Unify computes a most general unifier if one exists and
fails otherwise.

Unify(S) = while there is some T such that S => T do S :=
if S is in solved form then return S else fail.

Note that the above algorithm is nondeterministic: if there is more than one
applicable transformation rule, e.g. S => T and S = Tj, the algorithm
may choose an arbitrary one. Termination of Unify thus depends on termi-
nation of =>. The latter is not completely trivial because Eliminate may
increase the size of a unification problem, as Example 4.6.4 shows.

Lemma 4.6.5 Unify terminates for all inputs.

Proof We call a variable = solved if it occurs exactly once in S, namely on
the left-hand side of some equation = =’ t where = & Var(t).

Termination of = is proved by a measure function that maps a unifica-
tion problem S to a triple (n1,n2,n3) of natural numbers such that

ny is the number of variables in S that are not solved,
ny is the size of S, i.e. Y(_7peg(ls| + [¢[), and
n3 is the number of equations t =’ z in S.

The following table shows that each step decreases the triples w.r.t. the
lexicographic order:

ny ng2 N3
Delete > >
Decompose > >
Orient > = >
Eliminate >

76 4 Equational Problems

The interpretation is obvious: Eliminate decreases nj, which none of the
other rules can increase. Delete and Decompose decrease ng. Orient leaves
ng unchanged but decreases ns.

For example, the transformations sequence in Example 4.6.4 is mapped
10 (2,9,0) >ex (1,12,0) >per (1,10,1) >pep (1,6,1) >, (0,6,0). |

The key property of = is preservation of unifiers:
Lemma 4.6.6 If S = T then U(S) =U(T).

Proof For Delete, Decompose and Orient this is obvious.
For Eliminate let 6 := {z + t}. Applying Lemma 4.6.2 to = =’ t, which
is in solved form, we get that o = o6 if ox = ot. Thus we conclude that
ceU{z="t}uwS) & orx=datAoclU(S)
& ox =0t Aol elU(S)
& or=otNoelU(S)
& oeU({r="t}udbs). O

The following lemma expresses soundness of Unify and follows directly from
Lemmas 4.6.3 and 4.6.6 above.

Lemma 4.6.7 If Unify(S) returns a substitution o then o is an idempotent
mgu of S.

The completeness proof requires two fundamental properties of terms:
Lemma 4.6.8 An equation f(3;;) =' 9(%,), where f # g, has no solution.
Proof o(f(5m)) = f(o(sm)) # 9(o(tn)) = o(g(tn))- O

Lemma 4.6.9 An equation x =’ t, where x € Var(t) and = # t, has no
solution.

Proof If x # t then t is of the form f(t,) with € Var(t;) for some 7. Hence
o(z) and o(t) cannot be identical because |o(z)| < |o(t;)| < |o(t)]. O

Now we obtain completeness of Unify, i.e. every solvable system is solved:
Lemma 4.6.10 If S is solvable, Unify(S) does not fail.

Proof By Lemma 4.6.6 it suffices to show that if .S is solvable and in normal
form w.r.t. =, then S is in solved form.

S cannot contain equations of the form f(...) =’ f(...) (because of De-
compose), f(...) =’ g(...) (because of Lemma 4.6.8), z =" z (because of
Delete), and t =’ = where t ¢ V (because of Orient). Hence all equations
in S are of the form = =7 ¢t where ¢ Var(t) (because of Lemma 4.6.9).

4.6 Unification by transformation 77

Because of Eliminate, £ cannot occur twice in S. Hence S is in solved form.
O

Theorem 4.5.8 is now a direct consequence of soundness, completeness and
termination of Unify.

Detecting unsolvability with the above rules for => can be a lengthy affair
because one has to compute a normal form first. Therefore we introduce a
special unification problem L that has no solution, and add the two rules

Clash {(fm) =" g(@)} WS = L iff#yg
Occurs-Check {z ="t}w S = 1 ifzeV(t)andz #t

which are immediately justified by Lemmas 4.6.8 and 4.6.9. Here is a very
simple example of the behaviour of the extended set of rules:

{f(z,2) =" fly,9W)} ={z ="y, e ="g()} = {z ="y, y =" 9(y)}
— 1.

Since L is not in solved form, Unify fails on problems with normal form L.
The complexity of Unify is (at least) exponential in both time and space.

Example 4.6.11 It is easy to see that the unification problem

{&1 =" f(=0,20), @2 =" f(z1,21), ---) Tn =" f(Tn-1,%n-1)}

has the idempotent mgu

{z1 — f(z0,x0), 22 — f(f (0, z0), f(20,%0)),...}

which maps x; to a complete binary tree of height i. Thus the size of every
mgu of this example is exponential in the size of the input (because mgus
are equal modulo renaming).

The above unification problem can also be obtained by unifying only two
terms containing just variables and the binary f:

sn(z) = f(=1, f(z2, f(-szn)))s
tn(z) = f(f(zo,20), f(f(z1,21), f(---, f(Tn-1,Tn-1))...))

Note that the names of the x; on the rhs depend directly on the z on the lhs.
This becomes relevant in a later example where we need different instances
of s, and t, with different variable names = and y.

Computing the mgu in this example requires exponential space because of
copying. If the underlying implementation is based on graphs and sharing,
as opposed to trees, linear space complexity is obtained. We come back to
this implementation technique in Section 4.8. J

78 4 Equational Problems

Before we concentrate on algorithmic issues, let us briefly explore the
connection between unification and matching. Recall that (syntactic) mat-
ching is the problem of finding a substitution o such that o(s) = t. We
denote the matching problem by s <’ t and call ¢ a solution of s <’ ¢ or a
matcher of s and ¢, in which case we say that s matches ¢. The extension
to finite sets of matching problems is analogous to unification.

Note that all solutions of s <’ t coincide on Var(s) (see Exercise 4.14).
Thus a matcher is unique, as far as s and ¢ are concerned.

We can easily reduce matching to unification: simply regard all variables
in t as constants, for example by introducing a new constant c, for each
variable z.

Example 4.6.12 The matching problem f(z,y) <* f(9(2),z) becomes the
unification problem f(z,y) =’ f(g(c.), ¢z). The unifier {z — g(c,),y — ¢}
becomes the matcher {z — g(z),y — =z}

In many applications of matching we may assume that ¢ is ground. In that
case unification and matching trivially coincide. From a complexity point of
view, unification and matching do not differ very much either: both can be
implemented in linear time. However, linear implementations of matching
are quite straightforward (see Exercise 4.24), whereas linear unification re-
quires sophisticated data structures and will occupy us for much of the rest
of this chapter. Therefore matching should be implemented separately from
unification if efficiency is an issue.

Exercises

4.16 Let S and T be unification problems. Show that if ¢ is an mgu of S
and 0 an mgu of o(T') then fo is an mgu of SUT.

4.17 Show that after the addition of the rules Clash and Occurs-Check, the
second line in function Unify can be rephrased as follows:

if S = 1 then fail else return S.

4.18 Check if the following unification/matching problems are solvable:

(a) f(z,y) ="/ <7 f(h(a),2);
(b) f(z,y) ="/ <" f(h(z),2);
(©) f(z,b) ="/ <" f(Wy)2);
@) f(z,2) ="/ 5" f(h(y),).
4.19 Modify the transformation rules for unification (including Occurs-

Check and Clash) such that they directly solve the matching problem

(rather than first replacing all variables on the right-hand sides by

4.7 Unification and term rewriting in ML 79

constants). Allow for variables on both sides and detect unsolvability
as early as possible.

4.20 Does every matching problem have an idempotent solution? Can you
find a sufficient condition for the existence of an idempotent solution?

4.7 Unification and term rewriting in ML

This section lays the foundations for our little ML-based term rewriting labo-
ratory: it implements terms, substitutions, unification, matching and, while
we are at it, term rewriting. The emphasis is on succinctness. Efficiency is
catered for in the next section.

Terms have a very straightforward representation:

type vname = string * int;

datatype term = V of vname | T of string * term list;

Variable names consist of a name and an index. The index component
simplifies renaming but is not made use of in the current context. The
constructors V and T distinguish variables and proper terms. For example,
z1 is V("x",1) and f(a,y2) is T("£t", [T("a",[1),V("y",2)]1).
Substitutions are implemented by so-called association lists:

type subst = (vname * term) list;

Clearly, the mapping {z1 — ti,...} is represented as [(z1,t1),...1. Al-

though subst also contains elements like [(z,s) , (x,t)], our algorithms ne-

ver construct such lists that associate a variable with more than one term.
The test x € Dom(o) is implemented as indom z o:

(* indom: wvname -> subst -> bool *)

fun indom z s = exists (fn (y,.) => z = y) s;
The application of a substitution to a variable is performed by app:

(* app: subst -> vname -> term *)

fun app ((y,t)::8) ¢ = if 2=y then t else app s =;
Note that app s z is defined iff indom z s is true. The homomorphic extension
of a substitution to terms, introduced as & in Section 3.1 but subsequently
identified with o, is performed by lift:

(* lift: subst -> term =-> term *)
fun lift s (V o) if indom = s then app s z else V
| lft s (T(f,t)) = T(f, map (lift s) ts);

The test € Var(t) is implemented as occurs z t:

(* occurs: vname -> term -> bool *)
fun occurs z (V y) = =y
| occurs © (T(_,ts)) = exists (occurs) is;

80 4 Equational Problems

The actual unification code is shown in Fig. 4.5. The functions solve
and elim are defined by mutual recursion and implement the transformation
rules of the previous section: solve([(s1,t1),-..,(Sn,tn)], [1) returns T,
where T is a normal form of {s; =’ #1,...,8, ="' t,} reached by treating
sets like lists and always applying the transformation rules to the head of
the list; elim implements Eliminate. The only significant departure from the
transformation rules is that we have split the unification problem in two: the
first argument of solve is the actual unification problem still to be solved,
the second argument is the substitution already computed. Correctness
can easily be established by showing that if solve(S,o) calls (directly or
via elim) solve(S’,0’), then S U o = S’ U o’. The unsolvable system
1 produced by the rules Clash and Occurs-Check is implemented by the
exception UNIFY that is raised if the system has no solution. The function
unify is the specialization of solve to a single equation.

exception UNIFY;

(x solve: (term * term)list * subst -> subst *)
fun solve([]l, s) = s
solve((V z, t) :: S, 8) =
if V z = t then solve(S,s) else elim(z,t,S,s)
solve((t, V z) :: S, 8) = elim(z,t,S,s)
solve((T(f,ts), T(g,us)) :: S, 8) =
if f = g then solve(zip(ts,us) @ S, s) else raise UNIFY

(* elim: vname * term * (term * term) list * subst -> subst *)
and elim(z,t,S,s) =
if occurs z t then raise UNIFY
else let val zt = lift [(z,1)]
in solve(map (fn (t1,t2) => (xt t1, =zt t2)) S,
(z,t) :: (map (fn (y,u) => (y, zt w)) 8))
end;

(* unify: term * term -> subst *)
fun unify(t1,t2) = solve([(t1,t2)1, [1);

Fig. 4.5. Unification in ML.

This implementation of unification directly inherits the exponential time
and space complexity of the transformation rules. Try running Exam-
ple 4.6.11. Nevertheless unify performs well on practical examples.

Although matching can be reduced to unification, this is neither elegant
nor efficient. Therefore Fig. 4.6 gives a direct implementation of matching. It
follows the same pattern as unification (separate the remaining problem from
the substitution computed so far) but implements the transformation rules
for matching that are the subject of Exercise 4.19 above: matchs(S, [1)

4.7 Unification and term rewriting in ML 81

returns the solution of the matching problem S or raises exception UNIFY
if S has no solution; match(pat, obj) solves a single inequation pat <7 obj.

(* matchs: (term * term) list * subst -> subst *)
fun matchs([1, s) = s
| matchs((V z, t) :: S, s8) =
if indom z s then if app s = = t then matchs(S,s) else raise UNIFY
else matchs(S,(z,t)::9)
| matchs((t, V z) :: S, 8) = raise UNIFY
| matchs((T(f,ts), T(g,us)) :: S, 8) =
if f = g then matchs(zip(ts,us) @ S, s) else raise UNIFY;

(* match: term * term =-> subst *)
fun match(pat, 0bj) = matchs([(pat,ob)],[1);

Fig. 4.6. Matching in ML.

Matching must regard all variables on the right-hand sides as constants.
Therefore:

1. 2 <” t has the solution z + t even if z € Var(t). Therefore there is
no occurs check.

2. A newly found solution x +— ¢ does not influence solutions for other
variables and is not influenced by them. Therefore it suffices to add
x +— t to the substitution computed so far. If another pair z <7 ¢/ is
found later on, we only need to check if t = t'.

Based on the above implementation of matching, Fig. 4.7 implements term
rewriting. The TRS is represented as a list of term pairs.

exception NORM;

(x rewrite: (term * term) list -> term -> term *)
fun rewrite [] ¢t = raise NORM
| rewrite ((I,7)::R) t = lift(match(l,t)) r
handle UNIFY => rewrite R t;

(* norm: (term * term) list => term -> term *)
fun norm R (V) = Vz
| norm R (T(f,ts)) =
let val u = T(f, map (norm R) ts)
in (norm R (rewrite R u)) handle NORM => u end;

Fig. 4.7. Term rewriting in ML.

e rewrite R ttries to perform a single — g step at the root of ¢ by examining
the rules (I,7) of R in order. Each [is matched with ¢ and the resulting
substitution is applied to r. If matching fails, the next rule is tried. If no
more rules are left, exception NORM is raised.

82 4 Equational Problems

e norm R t computes an R-normal form of ¢ using a bottom-up strategy:
after normalizing the subterms of ¢, the resulting term u is rewritten once
at the root using rewrite, and norm is applied again. If rewrite raises
NORM, u is already in normal form and is returned as the result.

Note that even if a normal form exists, norm may not terminate: if R =
{a — a, f(z) — b} then f(a) has the normal form b but norm R (f(a))
does not terminate.

Exercises

4.21 What is the time and space complexity of match?

4.22 Modify the ML implementation of unification to achieve linear space
complexity by working with what could be called iterated substitu-
tions. For example, the solution to {z =’ f(y), v = ¢(2), z =" a}
should be represented by [(z, f(y)), (¥,9(2)), (z,a)]. (Hint: ite-
rated substitutions should be unfolded lazily, i.e. only so far that either
a non-variable term or the end of the instantiation chain is found.)

4.23 Write a top-down version of norm.

4.8 Unification of term graphs

The major source of inefficiency of the unification algorithms considered so
far is copying. This section presents algorithms on directed acyclic graphs
(dags) represented as pointer structures. The central idea is never to create
new terms but merely to update pointers. The algorithms build an additio-
nal pointer structure that links each variable to the term it is instantiated
by (if any). The actual substitution can be read off by following those links.
This leads to linear space requirements.

In order for this scheme to work, variables have to be shared: there must
only be one node for each variable. For example, f(z,y) =" f(y,y) must be
represented by the following dag:

e

Other subterms may also be shared, but this is not required.

4.8 Unification of term graphs 83

Example 4.8.1 Figure 4.8 shows the equation t3(z) =’ s3(x) from Ex-
ample 4.6.11. The solution is represented by dashed arrows that show how
each variable is instantiated. One can clearly see that x3 becomes the com-
plete binary tree of height 3. Yet it only takes linear space because it is
represented as a dag.

Fig. 4.8. Result of solving t3(z) =’ s3(z).

All algorithms in this section are written in Pascal. The type for terms is
shown in Fig. 4.9. Remember that if ¢ is a type, then ~t is the type of
pointers to .

type termP = “term;
termsP = “terms;

term = record
case isvar: boolean of
true: (is: termP);
false: (fn: string; args: termsP)
end;

terms = record t:termP; next: termsP end;

Fig. 4.9. Pascal types for terms.

A term f(t1,...,tn) is a record with isvar = false, fn = "£" and args
a pointer to the linked list of arguments t1,...,t,. A variable is a record
with isvar = true. Because variables are shared, they need not carry names
(except for input/output, which we ignore). Initially, the is field of each
variable is nil, i.e. the variable is not instantiated. The instantiation of
variables is indicated graphically by dashed arrows.

Recall that in Pascal the object addressed by a pointer p is denoted by
p~, and the field c of a record r is r.c. A value is returned from a function
f by assigning it to f.

The basic operations on terms are instantiating a variable,

84 4 FEquational Problems

procedure union(v,t: termpP);
begin v~.is := t end;

finding the end of an instantiation chain,

function find(t:termP) :termP;
begin if t~.isvar
then if t".is = nil then find := t else find := find(¢".1s)
else find := ¢
end;
and the occurs check:

function occurs(v,t:termP): boolean;
function occs(ts:termsP): boolean; forward;

function occ(t:termP): boolean;
begin if t".isvar then occ := v=t else occ := occs(t™.args) end;

function occs;
begin if ¢s = nil then occs := false
else if occ(find(ts™.t)) then occs := true
else occs := occs(ts™.next)
end;

begin occurs := occ(t) end;

The mutually recursive functions (hence forward, a Pascal peculiarity) occ
and occs test if a variable x occurs in a term ¢t and a linked list of terms ts.
To simplify nested case distinctions we introduce a global array cases

var cases: array[boolean,boolean] of (FF,FT,TF,TT);

which is initialized as follows:
cases[false,false]l := FF; caseslfalse,truel := FT;
cases[true,falsel := TF; cases[true,true]l := TT;

The actual unification procedure is shown in Fig. 4.10.

The mutually recursive functions unify and unifys unify two terms and
two linked lists of terms. Unification is realized by a simultaneous depth-
first traversal of both term graphs. Whenever a variable is found in one of
the two graphs, it is instantiated with the corresponding node in the other
graph by updating its is field via union (provided the variable neither is
identical to the other node nor occurs in it). Because variables are shared
there is no need to pass a substitution around (as in the ML implementation)
to instantiate other occurrences of the same variable. A Boolean value is
returned to indicate if unification was successful or not.

A graphical example of the effect of unification is shown in Fig. 4.11.

Although unify uses only linear space (because of the stack—it uses no
additional heap space), it may still require exponential time. The terms sy, (.)
and t(.) used in the following two examples were defined in Example 4.6.11.

4.8 Unification of term graphs 85

function wunify(t1,t2:termP): boolean;

function unifys(tsl,ts2:termsP): boolean;
begin case cases[tsI=nil, ts2=nil] of
TT: unifys := true;
TF,FT: unifys := false;
FF: if unify(ts1~.t,ts2".t) then unifys := unifys(ts1”.next,ts2".next)
else unifys := false
end
end;

begin t1 := find(t1); t2 := find(12);
if t1 = t2 then unify := true
else case cases[tl”.isvar,t2".isvar] of
TT: begin union(tl,t2); unify := true end;
TF: if occurs(t1,t2) then unify := false
else begin union(tl,t2); unify := true end;
FT: if occurs(t2,t1) ithen unify := false
else begin wunion(t2,t1); unify := true end;
FF: if t1~.fn = t2°.fn then unify := unifys(t1”.args,t2".args)
else unify := false
end
end;

Fig. 4.10. Unification on dags.

Fig. 4.11. f(z,g(z,z)) =7 f(h(y), 9(2, h(a))) after unify.

Example 4.8.2 While unifying s,(z) and t,(z), the final instantiation of
Zn, by Ty, := f(Zp—1,%n—1) is preceded by a test if z, occurs in T,,. However,
by this time 7}, has already become a complete binary tree of height n, albeit
in a space efficient dag representation (omitting is links):

O=) - =0

Function occurs takes exponential time to search this dag because it visits
shared subgraphs repeatedly.

This is just the result of a naive implementation of graph searching. The
next example reveals a more fundamental problem.

86 4 FEquational Problems

Example 4.8.3 Solving f(sn(z), f(5n(¥), Zn)) = f(tn(2), f(tn(y),yn)) Pro-
ceeds in three stages:

1. Unification of s,(z) and t,(z) produces (most is pointers omitted)

2. Unification of s,(y) and t,(y) produces (most is pointers omitted)

Yn--~(H=(F) - (=0

3. Unifying z, and y, leads to an exponential number of calls to unify
because the same subtrees are unified again and again.

The following subsection addresses both problems.

In spite of its exponential complexity the algorithm of Fig. 4.10 is probably
the most popular unification algorithm. The reason is that in practice the
exponential behaviour is very rare because most unification problems do
not exhibit a high degree of sharing. Implementations of Prolog [54], a
programming language whose execution is based on unification, go as far
as removing occurs altogether (the famous “occurs check”) to improve the
complexity of unification. From a theoretical point of view this is somewhat
pointless: there are linear unification algorithms with occurs check and the
one above remains exponential even without occurs check (see the second
example above). What is worse, it can lead to nontermination: check out
what happens if the calls to occurs are omitted while unifying f(z,y,z) and

f(9(),9(¥),y)-

4.8.1 A quadratic algorithm

Both sources of exponential behaviour outlined above can be cured with the
following type of terms:

term = record
stamp: integer;
18: termP;
case isvar: boolean of
true: ();
false: (fn: string; args: termsP)
end;

The stamp field avoids repeated occurs checks in the same subtree:

4.8 Unification of term graphs 87

var time: integer;
function occurs(v,t:termP): boolean;

function occ(t:termP): boolean;

begin
if t”.2svar then occ := v=t
else if t~.stamp = time then occ := false
else begin t~.stamp := tume; occ := occs(t”.args) end
end;

begin time := time+l; occurs := occ(t) end;

Function occs remains unchanged. Both time and all stamp fields must be
initialized to 0.

Instead of a Boolean marker, say visited, which needs to be reset after
each occurs check, stamp records the last time a node was visited and does
not need resetting. However, this technique only works well if integer is suffi-
ciently large (to avoid overflow) but still of fixed size (to leave the complexity
unchanged).

The is field is now part of every node. It avoids repeated unification of
the same subtrees because it allows sharing not just of variables but also of
proper terms. After we have unified two proper terms, the is field of one of
them is made to point to the other: after all, unification has made them the
same. Thus step 3 in Example 4.8.3 can produce the following instantiation
in linear time. The vertical arrows are created in the order from right to

left.
QP

Since every node has an is field, which is initialized to nil, find simply
becomes

function find(t:termP) :termP;
begin while t".is <> nil do ¢t := t~.is; find := t end;

The actual unification procedure is shown in Fig. 4.12. Procedures union
and wunifys are unchanged. The only change in wunify is the insertion of
union(tl,t2) in front of the call to unifys. At first glance this may look a
bit premature: after all, ¢t and ¢2 have not been unified yet. However, if the
term graph is cycle-free, it cannot do any harm to connect ¢ and 2 already
because it cannot influence the unification of their arguments. If the graph
contains cycles, it turns out that it is in fact essential to call union(t1,t2)
before unification of the arguments to avoid infinite recursion.

88 4 Equational Problems

function unify(tl,t2:termP): boolean;

begin t1 := find(t1); t2 := find(¢2);
if t1 = t2 then unify := true
else case cases[tl”.isvar,t2".isvar] of
TT: begin union(tl,t2); unify := true end;
TF: if occurs(tl,t2) then unify := false

else begin union(tl,t2); unify := true end;
FT: if occurs(t2,t1) then unify := false
else begin wunion(t2,t1); unify := true end;

FF: if t1~.fn = t2°.fn
then begin union(tl,t2); unify := unifys(t1”.args,t2".args) end
else unify := false
end
end;

Fig. 4.12. Quadratic unification.

Let m and n be the numbers of edges and nodes in the input dag. The
key observation is that union(t1,t2) makes tI unreachable via find. This
means that each call to unify

e either terminates without recursive call,
e or makes one node (t) and k edges (those to the children of ¢1) unreach-
able and creates k recursive calls to unify (via unifys).

Therefore the number of recursive calls to unify is bounded by m.

Each call of unify leads to two calls of find and at most one call each of
occurs and union. The complexity of union, find and occurs is O(1), O(n)
and O(m), respectively. Since both input terms are connected graphs we
have n < m + 2. Thus we have arrived at an O(m?) algorithm.

Despite this impressive improvement of the worst case complexity, in situ-
ations with a low degree of sharing, internal is links do more harm than
good. Figure 4.13 shows the result of applying the quadratic algorithm to
the problem in Fig. 4.11. None of the internal links is ever used but they
have to be created.

4.8.2 An almost linear algorithm

The remaining obstacles are the linearity of occurs and find. The first of
these is dealt with very simply: the occurs check is delayed until the very
end. Then it simply consists of a test whether the final dag is cyclic. This
test can be done in linear time (see Exercise 4.26).

Improving find requires the fast implementation of Union and Find de-
scribed in Section 4.4. A sequence of m Union and Find operations on n

4.8 Unification of term graphs 89

Fig. 4.13. f(z,9(z,2)) =" f(h(y),9(z, h(a))) after unify.

nodes can be executed in time O(m G(n)) [59], where G(n) is an extremely
slowly growing function with the property

.2}n

Thus in particular G(26%536) = 5, i.e. G(n) < 5 for all practical purposes.

The implementation of Union and Find is routine. Note that although
Find replaces find, we still need the original version of union when unifying a
variable and a proper term because the term must not point to the variable—
otherwise the information about its subterms would be lost.

G(22.)=n+1.

function wunify(tl,t2:termP): boolean;

begin t1 := Find(t1); t2 := Find(t2);
if t1 = t2 then unify := true
else case cases[tl”.isvar,t2".isvar] of
TT: begin Union(tl,t2); unify := true end;
TF: begin union(t1,t2); unify :
FT: begin union(t2,t1); unify :
FF: if ti~.fn = t2°.fn
then begin Union(t1,t2); unify := unifys(tl”.args,t2”.args) end
else unify := false
end
end;

function Unify(t1,t2:termP): boolean;
begin if wunify(tl,t2) then Unify := acyclic(tl) else Unify := false end;

Fig. 4.14. Almost linear unification.

The new version of unify is shown in Fig. 4.14. It is obtained directly
from the quadratic version by dropping the occurs check and adjusting the
union and find calls. Note that because of the missing occurs check, instan-
tiation of variables may introduce cycles into the graph, which could lead
to nontermination later on. Thus the call of Union before the call of unifys

90 4 Equational Problems

is now essential because it reduces the number of nodes reachable via Find
and thus guarantees termination. See also Exercise 4.27.

The main function is now Unify. It calls unify and checks the result for
cycles. For the implementation of acyclic see Exercise 4.26.

As in the quadratic version, unify, and hence union, Union and Find, are
only called O(m) times. Hence the overall cost is O(m G(n)), i.e. almost
linear. The use of the non-optimal union can add at most O(v), where v
is the number of distinct variables in the terms, to the overall complexity,
which is of no consequence.

4.8.3 The complexity of sharing

So far we have ignored the costs of creating term graphs where all occur-
rences of the same variable are shared (and similarly for constants in the
congruence closure algorithm). Assuming we start with a proper tree, where
variables carry names, how expensive is this sharing transformation?

The obvious algorithm traverses the tree, building up a table associating
variable names with pointers. Upon encountering a pointer p to a variable
v, there are two possibilities. If v is not yet in the table, add the pair (v, p)
to the table. If v is already associated with some pointer ¢, replace the
reference to p by ¢. This algorithm has time complexity O(m t(n)), where
t(n) is the time it takes to insert into or search a table with n entries. Using
clever data structures, e.g. red-black trees [59], t(n) is O(log n). Thus the
overall running time is O(m log n).

If we are only allowed to compare variable names, this is the best we can
do. It is known [172, p. 78] that detecting duplicates in a list is bounded
from below by Q(n log n), and there is a linear-time reduction of the latter
problem to our sharing problem: traverse the shared list, marking every
element. Then the original list contains duplicates iff at some point you find
an element already marked.

There are subtle variations that can improve this result:

1. If we know that the variable names are of a fixed length, i.e. from a finite
set, t(n) can be made constant, for example by allocating a large enough
array indexed by the names.

2. If we are prepared to use hashing, ¢(n) is constant on average, although
the worst case can be a lot worse.

3. If we have access to the string or bit representation of variable names,
we can implement the table as a so-called trie [226], where the lookup
time is independent of the number of entries but is linear in the length

4.9 Bibliographic notes 91

of the key. If we now include the size of the variable names in the size of
the graph, rather than just counting the number of nodes, we can share
variables in linear time.

Exercises

4.24 Modify the exponential version of unify to obtain a linear-time mat-
ching algorithm that allows variables in both terms.

4.25 Write an imperative analogue of the normalization function norm in
Section 4.7 using the matching algorithm of the previous exercise.

4.26 Implement almost linear unification. (Hint for a linear-time version of
acyclic: use depth-first search and mark each node as either untouched
(“white”), or discovered (“gray”) or finished (“black”) [59].)

4.27 The almost linear version of unify is more powerful than might appear
at first sight: it implements unification of cyclic terms, i.e. term
graphs that may contain cycles. Unify the following two cyclic terms:

A

X

Y

What happens in the above example if, instead of before unifys, Union
is called afterwards?

4.9 Bibliographic notes

Decidability and complexity of the word problem in particular algebraic
structures are common themes in algebra and logic. Ackermann [1] was the
first to show the decidability of ~¢, where G is a finite set of ground identit-
ies. (In fact, he considered more general logical problems.) Kozen [146, 147]
represented terms by graphs and showed that deciding ~¢g is P-complete.
Downey, Sethi and Tarjan [81] present a congruence closure algorithm that
runs in worst-case time O(m(log m)?) (using trees) and average-case time
O(m log m) (using hash tables). The quadratic congruence closure algo-
rithm in Section 4.4 is due to Nelson and Oppen [184] who report that in
their application (theorem proving for program verification) their algorithm
performs no worse than the one by Downey, Sethi and Tarjan. However,
Nelson and Oppen’s proof of the completeness part of Theorem 4.4.3 fails to
take into account the inductive nature of congruence closure. An alternative

92 4 FEquational Problems

approach to congruence closure is due to Shostak [229, 230, 63]. Basin and
Ganzinger [23] generalize the finiteness arguments underlying congruence
closure to a whole class of decision problems.

Syntactic unification seems to have appeared first in the work of Her-
brand [107] (see [106, p. 540] or [108, p. 148]). The first algorithm accom-
panied by a proof of correctness and termination is due to Robinson [216].
His exponential algorithm was later independently refined into a quasi-linear
one by a number of people [24, 117, 165]. A linear unification algorithm was
discovered by Paterson and Wegman [198]. The quadratic algorithm in this
book is based on the exposition by Corbin and Bidoit [58].

Dwork, Kanellakis and Mitchell [84] have shown that unification is P-
complete. Thus the existence of a fast parallel unification algorithm would
contradict the popular belief that P is not contained in NC, the class of
problems solvable in polylogarithmic time using polynomially many proces-
sors. This is in contrast to matching, which is in NC [84, 85|, which provides
another argument for implementing matching separately from unification.

An algebraic and non-algorithmic approach to unification is developed by
Eder [86] and Lassez, Maher and Marriott [158]. Huet [119] uses a lattice-
theoretic duality argument to prove the existence of most general unifiers.

Huet [117] and Paterson and Wegman [198] realized that unification can
be seen as a computation on equivalence classes of terms. In fact, unification
is dual to congruence closure: in one case equalities are propagated down, in
the other case up the tree. This relationship is studied in detail by Kanellakis
and Revesz [133].

Almost linear unification algorithms for cyclic terms are given by Huet
[117] (essentially our almost linear unify) and Martelli and Rossi [166]. Cour-
celle provides an algebraic treatment of cyclic terms [60].

An account of a computer-checked correctness proof of a unification algo-
rithm is given by Paulson [199).

5

Termination

Termination is an important property of term rewriting systems. For a finite
terminating rewrite system, a normal form of a given term can be found
by a simple depth-first search. If the system is also confluent, the normal
forms are unique, which makes the word problem for the corresponding
equational theory decidable. Unfortunately, as shown in the first section
of this chapter, termination is an undecidable property of term rewriting
systems. This is true even if one allows for only unary function symbols
in the rules, or for only one rewrite rule (but then for function symbols of
arity greater than 1). In the restricted case of ground rewrite systems, i.e.
rewrite systems whose rules must not contain variables, termination becomes
decidable, though. In the second section of this chapter, we introduce the
notion of a reduction order. These orders are an important tool for proving
termination of rewrite systems. The main problem for a given rewrite system
is to find an appropriate reduction order that shows its termination. Thus,
it is desirable to have a wide range of different possible reduction orders
available. In the third and fourth sections of the chapter, we introduce two
different ways of defining reduction orders.

5.1 The decision problem

First, we show undecidability of the termination problem for term rewriting
systems, and then we consider the decidable subcase of right-ground term
rewriting systems (which can be treated by a slight generalization of the
well-known proof for ground systems).

93

94 5 Termination

5.1.1 Undecidability in the general case

It should be obvious that the termination problem for term rewriting sys-
tems is closely connected with the termination problem for programs. This
connection is mirrored by the fact that undecidability of termination of
rewrite systems can be shown by a reduction of the uniform halting problem
for Turing machines (i.e. the problem of whether a given Turing machine
halts on all configurations). To be more precise, we first show that any
Turing machine can be translated into a finite term rewriting system such
that computations of the Turing machine correspond to reduction sequen-
ces of the rewrite system. This proves that term rewriting systems provide
a computationally complete formalism, but it does not directly imply un-
decidability of the termination problem for term rewriting systems. The
remaining obstacle, which is overcome in the second part of the proof, is
that not all terms represent legal Turing machine configurations. Thus, it
must be shown that uniform termination of the Turing machine also implies
termination of the rewrite system on such “illegal” terms. To make this
possible, the reduction is somewhat more complex than might be expected.

Before we start describing the reduction, let us briefly recall the important
definitions for Turing machines. Without loss of generality, we use a model
with one tape, which is infinite in both directions, and we assume that the
input alphabet coincides with the alphabet of tape symbols. In addition, we
do not consider distinguished start- and halt-states: the machine terminates
if no transition is possible.

Definition 5.1.1 A (nondeterministic) Turing machine M is described
by
e afinite alphabet I" := {sy,..., s, } of symbols, where s is considered
as the blank symbol,
e a finite set @ = {qo,...,gp} of states, and
¢ a transition relation A CQ xI'x Q xT' x {I,r}.

S0 S0 S1 52 52 S1 52 S0 S0

Fig. 5.1. A Turing machine configuration.

5.1 The decision problem 95

The machine works on a tape whose tape squares each contain a symbol of
I'. The tape is infinite in both directions, but it is assumed that there are
only finitely many symbols different from the blank symbol sg on the tape.
In each stage of the computation, the machine is in a state ¢ € @) and its
read-write head scans a particular square of the tape (see Fig. 5.1). If the
machine is currently in the state ¢ and a square containing s is scanned, and
if a transition (g, s, ¢, s, d) is contained in A, then the machine can make the
following computation step: the read-write head replaces s by s/, it moves
one square to the left (right) if d = (d = r), and the state is changed from
g to ¢’. A computation stage of the machine, called a configuration in the
following, is thus described by the current state, the current position of the
read-write head, and the current content of the tape. We write K k¢ K’ if
configuration K’ can be reached from configuration K by one computation
step of the Turing machine M.

It is well-known that the following problem, called the halting problem
for Turing machines, is in general undecidable:

Instance: A Turing machine M and a configuration K of the machine.
Question: Are all computations starting with K terminating, i.e. is there
no infinite computation K Faqy K1 by Ko -+ -7

Thus, for the halting problem, both the machine M and the start configur-
ation K are given as input for the would-be decision procedure, which should
answer “yes” if the machine halts given this start configuration, and “no”
otherwise. In contrast, for the so-called uniform halting problem, only
the machine is given as input:

Instance: A Turing machine M.

Question: Are all computations of M terminating, i.e. is there no con-
figuration K such that K is the starting configuration of an infinite
computation K Fayg K1 Fap Koo+ -7

The uniform halting problem is also known to be undecidable. In fact, it is
not even recursively enumerable [109].

In order to reduce the (uniform) halting problem for Turing machines
to the termination problem for term rewriting systems, we must simulate
computation steps of a given Turing machine M by rewrite steps of a cor-
responding term rewriting systems Raq. For this purpose, configurations
are encoded as terms over an appropriate signature X4.

Definition 5.1.2 For a Turing machine M, as introduced above, we define

ZM :={';37“'1';77,";—0"”751«}U{qu"'aqp}U{l77}a

96 5 Termination

where each function symbol in this signature is assumed to be of arity 1.
Let xo be a fixed variable. A configuration term over X is any term
of the form

-

(G320l 53, (T (@))),
where k,h > 0, {i1,...,%k, j1,---,71} € {0,...,n}, and ¢ € Q.

Every configuration term ¢ = l(s—z;(s?l(q(s‘]_l(s;(?(xo)))))))
describes a unique configuration K;:

1. the state of the machine in K; is g,

2. the read-write head scans a square containing s;,, if h > 1, and a square
containing the blank symbol sg if h = 0,

3. the squares to the right of the head contain (read from left to right)

8jay -+ -, 85, and then infinitely many blanks,
4. the squares to the left of the head contain (read from right to left)
Si1s -+ -, 8i, and then infinitely many blanks.

Conversely, since in every configuration only finitely many tape squares
contain symbols different from sg, every configuration can be represented
by infinitely many configuration terms, which differ only in the number of
function symbols s following 7 and in the number of function symbols 50
preceding 7. For example, the following are some of the configuration terms
corresponding to the configuration depicted in Fig. 5.1:

1 (51(q(52(52(51(52(T (20)))))))), 1 (30(51(q(52(52(51(52(50(T (0)))))))));

I (s0(s1(q(52(52(51(52(T (0))))))))s 1 (51(a(52(52(51(52(50(T (20)))))))))-
The symbol 7 marks the left margin of the tape segment represented in
the configuration term, and 7 marks the right margin of this segment. The
intended meaning is that to the left of | and to the right of T there are infi-
nitely many tape squares containing so. This explains the special treatment
of | and T in the next definition.

The effect that a transition of A has on a configuration K; can easily
be expressed by rewrite rules that apply to the corresponding configuration
term t.

Definition 5.1.3 The rewrite system R4 consists of the following rewrite
rules:

e For each transition (g, s;,q’,s;,7) € A, Ry contains the rule
q q,8;

a(5i(x)) — 55(d'(2))-

5.1 The decision problem 97

If i = 0, then Raq contains the additional rule

a(7(2)) = 5i(¢(7(2))).

e For each transition (g, s;,¢, sj,1) € A, Ry contains the rule

T(@(5(@) = 1(¢(Go(55 (),

and for each si € I" the rule

sk(a(3:(x))) — ¢'(sk(55(2)))-

If i = 0, then Rp4 contains the additional rule

T(a(T(@))) = 1(d(5o(35(T(@)))),

and for each si € I" the rule
sk(q(7(2))) — ¢'(sx(s55 (7 (2)))).

The additional rule for the first type of transitions (right move) is necessary
because not all the blanks on the tape are contained in the corresponding
configuration term. If ¢ immediately precedes 7, then this means that on
the tape the scanned symbol is a blank. Analogously, the additional rules
for the left moves can be explained. Obviously, since A and I' are finite,
the rewrite system R4 is finite as well. The next lemma is an immediate
consequence of the definition of R.

Lemma 5.1.4 Let M be a Turing machine and let Raq be the corresponding
rewrite system.

1. For any pair t,t' of configuration terms, t —g,, t' implies Ky Faq Ky

2. For any pair of configurations K, K' and any configuration term t with
K = K;, K Fp K’ implies that there exists a configuration term t' such
that K' = Kt/ and t —Rm .

Note that we cannot simply state the second part of the lemma as the con-
verse of the first part. Indeed, the configurations K, K’ are each described by
infinitely many configuration terms, but there are reductions with R4 only
between corresponding pairs of these terms, i.e. pairs where corresponding
numbers of blanks on the borders of the non-blank part of the tape are in-
cluded. The lemma is, however, sufficiently strong to imply that any infinite
computation Ko Faq K1 Fap Ko Faq - -+ of M yields an infinite reduction
to =Ry t1 —Ru t2 —Ry, -, and vice versa. Thus, undecidability of the
halting problem for Turing machines yields a first undecidability result for
termination of term rewriting systems:

98 5 Termination

Proposition 5.1.5 The following problem is in general undecidable:

Instance: A finite term rewriting system R and a term t.
Question: Are all R-reductions starting with t terminating, i.e. is there no
infinite reductiont -gt, —»gpta —pg---?

This proposition does not imply undecidability of the termination problem
since it is only concerned with reductions starting with a particular term
t, whereas termination requires that all reductions starting from all possi-
ble terms are terminating. Neither does the undecidability of the uniform
halting problem for Turing machines directly yield undecidability of the ter-
mination problem: the remaining obstacle is that not all terms over ¥
are configuration terms. Thus, it is conceivable that all reductions starting
with configuration terms terminate (and thus, the Turing machine termi-
nates for all start configurations), but there is a nonterminating reduction
starting with a term that is not a configuration term. The next lemma
shows, however, that this case cannot occur.

Lemma 5.1.6 Let t be an arbitrary X aq-term. If there is an infinite reduc-
tiont —Rr,, t1 >R, t2 —Ry -, then there exist a configuration term t'
and an infinite Rpyq-reduction starting with t'.

Proof Since the signature Xz contains only function symbols of arity 1,
we can write a Ypq-term ¢ = fi(fa(-- - fx(z)---)) simply as t = w(z), where
w:= fifa... fr is a word over the alphabet ¥ 4. For F = {3—{, .. ,s—,;} and
f = {E,...,é:,}, we have Yipg = FUFUQU {7‘,7}. Any word w over
3 pm can thus be written as

W = UIV1U2V2 . . . UgUqUg+1,

where the u;s are words over the alphabet TUTU {r, 7}, and the v;s are
words in F*QF*, which are assumed to be maximal, i.e., for 1 < i < ¢, u;
does not end with a symbol in —f, and for 2 < i < g+1, u; does not begin with
a symbol in f Obviously, one obtains the words v; of this decomposition
by considering all states (i.e. elements of @) occurring in w, and then going
to the left as long as symbols of ? occur and going to the right as long as

symbols of f occur.

Since all the rewrite rules of R contain exactly one symbol from @, any
reduction that applies to w(z) in principle takes place inside one of the v;s.
More precisely, it is easy to see that the following fact holds:

Fact: Let w(x) be a Ep-term, let w = uiv1ugvs ... Uglqugy1 be the
decomposition of w described above, and assume that w(z) —r,, w'().

5.1 The decision problem 99

—% %
Then there exist an indez j,1 < j < ¢, and a word v; € T QT such
that

e the corresponding decomposition of w' is

/ !
w = U1v1uvy... Uj’UjUj+1 < UgUqlUg1,

o and Tv; 7 (20) =Ry 1,7 (20).
Since ¢ is finite, this implies that an infinite reduction starting with w(x)
yields an infinite reduction starting with lvj?(xo) for some 7,1 < j < gq.

-

This proves the lemma since [v; (o) is a configuration term. O

Note that this lemma only holds because we used different symbols for de-
scribing the content of the tape to the left of the read-write head (namely
symbols s;) and to the right of the read-write head (namely symbols ;). For
Lemma 5.1.4 to hold, it would have been sufficient to use identical symbols.
As an immediate consequence of Lemma 5.1.4, Lemma 5.1.6, and unde-
cidability of the uniform halting problem for Turing machines, we obtain
undecidability of the termination problem for term rewriting systems:

Theorem 5.1.7 The following problem is in general undecidable:

Instance: A finite term rewriting system R.
Question: Is R terminating, i.e. is there no term t starting an infinite
reductiont —-gpt1 —wgpts =g ---?

The statement of the theorem could be strengthened as follows: since the
uniform halting problem is not even recursively enumerable, the same holds
for the termination problem for term rewriting systems.

5.1.2 A decidable subcase

A term rewriting system R is called right-ground iff the right-hand sides of
rules in R are ground terms, i.e. for all | — r € R we have Var(r) = (. The
following lemma can be used to derive an effective test for deciding whether
a finite right-ground term rewriting system is terminating or not.

Lemma 5.1.8 Let R be a finite right-ground term rewriting system. Then
the following statements are equivalent:

1. R does not terminate.
2. There exist a rulel — r € R and a term t such that r i>R t and t
contains r as a subterm.

100 5 Termination

Proof Obviously, (2 = 1) holds since (2) yields the infinite reduction r g
t = t[r], S g t[tl, = t[t[r]p]p R - - -, where p is a position such that ¢, = r.

We show (1 = 2) by induction on the cardinality of R. If R is empty,
then 1 is trivially false. Thus, assume that |R| > 0, and consider an infinite
reduction t| gty —Rt3 —pg---.

(i) Without loss of generality, we may assume that at least one of these
reductions occurs at position €. Otherwise, there exists a (k-ary) function
symbol f such that the terms t; are of the form ¢; = f(t;;,...,t;) and each
reduction step occurs inside one of the subterms ¢; ;- Since k is finite and the
reduction sequence was assumed to be infinite, there exists an index j such
that infinitely many reduction steps are applied to the subterm at position
J, and thus, t;, is the first term of an infinite reduction. By iterating this
argument, we finally obtain an infinite reduction sequence where at least
one step is done at position e.

(ii) This means that there exist an index i, a rule [— r € R, and a
substitution o such that ¢; = o(l) and t;4+1 = o(r) = r. Consequently, there
is an infinite reduction r —g t;12 —pg tir3 —pg --- that starts with ». We
distinguish two cases:

e Case a: the rule [— r is not used in this reduction. Thus, R — {l — r}
does not terminate, and we can apply the induction hypothesis to this
smaller system.

e Case b: the rule [— r is used in this reduction. This means that there
exists j > 2 such that r occurs in t;;, which shows that (2) holds. O

The decision procedure for termination of finite right-ground term rewriting
systems derived from this lemma works as follows: consider all right-hand
sides 71,...,mp of R={l1 — 71,...,ln, — 1}, and simultaneously generate
all reduction sequences starting with these right-hand sides. This is done by
generating first all reductions of length 1 starting with rq,...,7r,, then all
reductions of length 2, etc. If R does not terminate, then this implies (by
Lemma 5.1.8) that there are an index i, a term ¢ containing r; as a subterm,

and a finite length k£ > 1 such that r; &, r t. Thus, we detect nontermination
of R when generating the reductions of length k. If R terminates, then —g
is globally finite since it is finitely branching (see Lemma 2.2.4). Thus, the
process of generating all reductions starting with rq,...,r, terminates, and
we detect termination of R after finitely many steps. Thus we have

Theorem 5.1.9 For finite right-ground term rewriting systems, termination
is a decidable property.

5.2 Reduction orders 101

Exercises

5.1 Consider the following modification of the reduction described in Sub-
section 5.1.1: for a given Turing machine M, let

Yy = {so,...,sn}U{qo,...,qp}u{l,?},

and let R/, be the rewrite system that is obtained from R by repla-
cing both s; and s; by s;. Give an example of a terminating Turing
machine M for which Ry, is not terminating.

5.2 Show (by counterexample) that the following is not a feasible way of
testing a given ground term rewriting system R = {l1 — 71,...,l, —
rn} for termination: Generate all reduction sequences starting with
r1. If one of these sequences yields a term that has r; as subterm then
conclude that R is not terminating. Otherwise, continue with rs, etc.

5.3 Prove the analogue of Theorem 5.1.9 for left-ground systems, and
explain why this is not an interesting generalization of the theorem
for the ground case.

5.4 A term rewriting system R is called right-reduced if for all (I —
r) € R, r is R-irreducible. Show that a right-ground term rewriting
system that is right-reduced is terminating.

5.2 Reduction orders

In the previous section, we have seen that the termination problem is in
general undecidable, i.e. there cannot be a general procedure that, given
an arbitrary finite term rewriting system, answers with “yes” if the system
terminates, and with “no” otherwise. Nevertheless, it is often necessary to
prove for a particular system that it terminates, and it is possible to develop
methods that facilitate this task. Ideally, these methods should not just be
helpful to a human who tries to prove termination of a given rewrite system
by hand. It should be possible to automate them in the sense that, whenever
they can indeed be used to prove termination of the rewrite system at hand,
they automatically detect this without any human intervention. Of course,
undecidability of termination shows that such an automated method cannot
succeed for all terminating systems. The methods that we shall introduce
below will not all satisfy the requirement that they can be fully automated.

As indicated in Section 2.3, the basic idea when proving termination is
to employ a well-founded (i.e. Noetherian, terminating) order. Assume that
R CT(Z,X)xT(X,X) is a finite term rewriting system, and that > is
a well-founded (strict) order on T'(X,X). Obviously, R is terminating if,

102 5 Termination

for all terms s,t, s —g t implies s > t. Instead of deciding s > ¢ for the
(infinitely many) pairs s,t with s —pg t, we should like to check just [> r
for the (finitely many) rules I — r € R. For this to imply s > ¢ for all
s,t with s — g t, the order > must satisfy some additional properties. This
motivates the definition of reduction orders.

Definition 5.2.1 Let ¥ be a signature and V' be a (countably infinite) set
of variables. A strict order > on T'(X, V) is called a rewrite order iff it is
1. compatible with ¥-operations: for all s1,s0 € T'(X,V), all n > 0, and
all f e E(n), s1 > so implies
f(tl, o tic1, 81, i1 - ,tn) > f(tl, vy tic1,82, 841 - ,tn)

for all i,1 <i<mn,and all t1,...,t;—1,tiy1...,tn € T(XZ,V).
2. closed under substitutions: for all s1,s9 € T(X,V) and all substitu-
tions o € Sub(T'(2,V)), s1 > so implies o(s1) > o(s2).

A reduction order is a well-founded rewrite order.

We may also call a partial order > on terms a reduction order, by which
we mean that its strict part > is a well-founded rewrite order. The name
“rewrite order” is motivated by the fact that the relations X for term
rewriting systems R satisfy these two conditions. Note that the first condi-
tion implies (and thus is equivalent to) the condition

1'. For all s1,s2,t € T(X,V) and all p € Pos(t), s1 > s implies
t[s1]p > tlsalp.

Example 5.2.2 (1) Recall that for a term ¢, we denote by |t| the size of t.
The strict order > on T'(X, V') that is defined by

s>t iff |s| > |t

is well-founded and compatible with ¥-operations. In general, it is not a
reduction order since it need not be closed under substitutions. For example,

|f(f(z,2),)| =5>3=|f(y,9)l,

but for the substitution o := {y — f(z,z)} we have

|lo(f(f(z,z),v))| |f(f(z,2), f(z,2))| = 7,
lo(fw)l = If(f(z,2), f(z,2))] = 7.

(2) The reason why the order defined in (1) is not closed under substitu-
tions is that a variable may occur more often in the smaller term than in
the larger. If this is prohibited, we obtain a reduction order. For a term ¢

5.2 Reduction orders 103

and a variable z, we denote by |t|, the number of occurrences of = in t. The
strict order > on T'(X, V) that is defined by

s>t iff |s| > |t| and, for all x € V, |s|; > |t|,
is a reduction order (Exercise 5.5).

Our interest in reduction orders stems from the following termination the-
orem:

Theorem 5.2.3 A term rewriting system R terminates iff there ezists a
reduction order > that satisfies | > r for alll — r € R.

Proof (1) Assume that R terminates. In this case, 5 R itself is a reduction
order, which obviously satisfies [A grrforalll - reR.

(2) Since > is a rewrite order, [> r implies t[o(I)], > t[o(r)], for all terms

t, substitutions ¢ and positions p € Pos(t). Thus, ! > rforalll - r € R

implies s1 > so for all terms s1, s3 with s; —g s2. Since > is well-founded,

this shows that there cannot be an infinite reduction s; —g s9 —pg s3---.

O

In some applications, one needs the property that any pair of distinct ground
terms is comparable w.r.t. the reduction order employed. We call a reduction
order > on T'(%, V) total on ground terms iff its restriction to T'(%, 0) is
a (strict) linear order.

In the remaining two substantive sections of this chapter, we introduce two
different methods for constructing reduction orders on terms. The second
method can also be used to construct reduction orders that are total on
ground terms.

Exercises
5.5 Show that the strict order > on T'(X, V) that is defined by
s>t iff |s| > |t| and, for all z € V, |s|z > |t],

is a reduction order.
5.6 Let > be a reduction order on ground terms, i.e. a strict order on
T(X,0) that is well-founded and satisfies

51> 83 = t[s1]p > t[s2]p

for all s1,s9,t € T'(X,0) and all p € Pos(t). Let V be a countably
infinite set of variables. We say that a substitution o is a ground
substitution on a finite set X C V of variables iff o(z) € T(%, () for

104 5 Termination

all x € X. Show that the relation = C T'(X,V) x T(Z,V) that is
defined by

81 > so iff for all ground substitutions o on Var(s1) U Var(ssz)
o(s1) > o(s2)

is the largest reduction order on T'(X, V) that contains >.

5.3 The interpretation method

In order to define a reduction order on T'(X, V'), this method does not look
directly at the terms over . Instead it considers their interpretation in a
Y-algebra that is equipped with a well-founded order. Thus, let A be a
Y-algebra and let > be a well-founded (strict) order on its carrier set A.
In principle, we should like to say that a term s is larger than a term ¢
iff the interpretation of s in A is larger than the interpretation of ¢ in A.
Since the interpretation of the variables occurring in these terms is not yet
defined, talking about the interpretation of a term with variables only makes
sense for a given valuation of the variables. Such a valuation is given by a
homomorphism 7 : T'(X,V) — A.t

Definition 5.3.1 Let A be a nonempty X-algebra and > be a well-founded
(strict) order on its carrier set A. The binary relation >4 on T'(%,V) is
defined by

s >4t iff w(s) > m(t) for all homomorphisms 7 : T'(X,V) — A.

Stability under substitutions for >4 is a consequence of the fact that we
consider all possible valuations of the variables in this definition. To satisfy
compatibility with Y-operations, we must require that all interpretations of
function symbols are monotone in the following sense:

Definition 5.3.2 Let > be a strict order on the set A. A function F' : A™ —
A is called monotone (w.r.t. >) iff

a>b = F(a‘la"'aai—laaaai+1,“'aan) >F(ala"'1a‘i—-1ab7ai+1a"')a’n)
holds for all 4,1 <% < n, and all a,b,ay,...,ai—1,08i+1,---,0, € A.

Theorem 5.3.3 Let A and > be as in Definition 5.8.1. If the interpretations
fA of all function symbols f € T are monotone w.r.t. >, then >4 is a
reduction order on T(X,V).

t Recall that this homomorphism is uniquely determined by the images of the variables.

5.8 The interpretation method 105

Proof Obviously, the fact that > is a strict order on A implies that > 4
is a strict order on T'(3,V). Thus, it remains to be shown that the three
conditions of the definition of reduction orders are satisfied.

(1) Assume that there is an infinite chain s; >4 s3 >4 s3 >4 --- in
T(X,V). By definition of > 4, this implies 7(s1) > m(s2) > m(s3) > --- for
all homomorphisms 7 : T'(%,V) — A. Thus, if we take an arbitrary such
homomorphism, we obtain the infinite chain 7(s1) > 7(s2) > 7(s3) > --- in
A, which is a contradiction. This shows that >4 must be well-founded.

(2) To prove compatibility with ¥-operations, we must show

$1>482 = f(tla"'asla"'atn) >Af(t1a'--as2)"')tn)'

By definition, s; >4 s2 means that m(s1) > 7w(s2) for all homomorphisms
7:T(Z,V) — A. Together with monotonicity of f*, this implies

W(f(tla ceey 81y atn)) = fA(ﬂ'(tl)a o ,71'(31), oo aﬂ-(tn))
> fAm(t),...,m(s2),. .., 7(ts))
= 7w(f(t1,...,82,---,tn))

for all homomorphisms 7, i.e. f(¢1,...,81,..-,tn) >4 f(t1,-..,82,-..,tn)-
(3) Assume that s1 > 4 s2, and let o be a substitution. To obtain o(s1) >4
o(s2), we must show that 7(o(s1)) > m(o(s2)) for all homomorphisms 7 :
T(X,V) — A. This follows immediately from s; >4 sz and the definition
of >4 since the composition of 7 and o is a homomorphism 7’ := 7o :
T(E,V) - A O

Polynomial orders

In the remainder of this section, we introduce a particular class of reduc-
tion orders of the form >4, in which function symbols are interpreted as
polynomials over the natural numbers.

Definition 5.3.4 Let ¥ be a signature. A polynomial interpretation of
Y is a Y-algebra A that satisfies the following properties:

e The carrier set of A is a set of positive integers, i.e. A C N —{0}.

e Every n-ary function symbol f € ¥ is associated with a polynomial
P¢(X1,...,Xn) € N[X1,...,Xy], i.e. a polynomial in n indetermin-
ates Xi,..., X, with coefficients in N. The interpretation of f in A
is the valuation function of Py, i.e. f4(a1,...,as) := Pf(a1,...,as).

As well-founded order > on A we take the usual order on natural numbers.

106 5 Termination

The fact that the carrier set A of a Y-algebra A is closed under apply-
ing Y-operations implies that the carrier set A of a polynomial interpreta-
tion is closed under evaluating the polynomials Py, i.e. for all f € ¥ and
ai,...,an € A we have Pf(ai,...,an) € A. Thus, one cannot simply define
a polynomial interpretation by associating each function symbol f € ¥ with
an appropriate polynomial Py, and by fixing an arbitrary set A of posi-
tive integers as carrier set: one must also make sure that the above closure
property is satisfied.

Example 5.3.5 Assume that ¥ = {®,®} consists of two binary function
symbols, and let A = N—{0,1}. If we associate the polynomial Pg := 2X +
Y +1 with @ and the polynomial Py := XY with ©, then the corresponding
polynomial interpretation A satisfies ®4(m,n) = 2m+n+1 and ©*(m,n) =
mn for all m,n € N — {0,1}. It is easy to see that the closure property is
satisfied.

The mapping of function symbols to polynomials can be extended to terms
in the obvious way. A term t¢ containing n variables zi,...,z, yields a
polynomial P; in n indeterminates X3, ..., X,. For example, the polynomial
interpretation from above associates the term ¢ = z @ (z @ y) with the
polynomial

P, = Po(X,Pp(X,Y))
= X2X+Y+1)
= 2X?2+ XY + X.

In general, the interpretations of function symbols in polynomial inter-
pretations need not be monotone for the strict order >. For example, if we
had associated the symbol ® with the polynomial P := X2, then we would
have had 2 > 1, but ®#(1,2) = 1 = ®#4(1,1). The obvious reason for this
problem is that the polynomial Py (X,Y) = X? does not contain the second
indeterminate Y, i.e. it depends only on the first indeterminate X.

Definition 5.3.6 We call a polynomial P(X1,...,X,) € N[X1,...,X,] a
monotone polynomial iff it depends on all its indeterminates, i.e., for all
1,1 < i < n, it contains a monomial (with non-zero coefficient) in which
X; occurs with an exponent at least 1. A monotone polynomial inter-
pretation is a polynomial interpretation in which all function symbols are
associated with monotone polynomials.

The polynomial interpretation defined in Example 5.3.5 is monotone.

5.3 The interpretation method 107

Lemma 5.3.7 The functions fA of a monotone polynomial interpretation
are monotone.

Proof Let f be an n-ary function symbol. For i € {1,...,n} we can write the
polynomial Py € N[X1,...,X,] = (N[X1,...,Xi—1, Xiy1,..., Xn])[Xi] as a
polynomial in the indeterminate X; with coefficients Q; in N[X1,..., X;_1,
Xi+1a oo aXn]:

P = Qu(X1,.-, Xic1, Xit1, -, Xa)XF+ ... +
Q1(X1,.. ., Xi1, Xig1, -+, Xn) X +
Qo(X1,..., Xic1, Xit1,---, Xn)-

Since Py is monotone, it depends on X;, and thus we can assume that k£ > 0
and that @i is not the zero polynomial. Hence, for all ay,...,a;—1,ai41,...,
an € A C N — {0}, the partially evaluated polynomial Pf(ai,...,a;—1, X,
@iy1,---,0y) is a polynomial of degree k > 0 in the indeterminate X; with
coefficients in N. Obviously, this implies

a>b = Pf(al,...,ai_l,a,ai+1,...,an)>Pf(al,...,ai_l,b,aiﬂ,...,an)
for all a,b € A C N —{0}. O

Together with Theorem 5.3.3, this lemma implies that the relation >4 in-
duced by a monotone polynomial interpretation is a reduction order. We
call such a reduction order a polynomial order.

Now, we turn to the question of how to determine, for terms [, 7, whether
l >4 r holds for a given polynomial order >4. For A C N — {0} and
polynomials P,@Q € N[X3,...,X,], we write P >4 Q iff P(ai1,...,a,) >
Q(a1,...,ay) for all ai,...,a, in A. The following lemma is an immediate
consequence of this definition:

Lemma 5.3.8 1 >4 7 iff P, >4 P,.

In practice, it is often rather convenient to be able to restrict the domain
over which the polynomials must be evaluated by choosing an appropriate
set A. This is illustrated by the following example.

Example 5.3.9 Consider the term rewriting system
R={z0@y®2)— (z0y)@(z02),(=dy) @2z (yd2)}

In order to show that R terminates, we take the monotone polynomial in-
terpretation defined in Example 5.3.5.

108 5 Termination
1. The polynomial P, associated with l; ==z ® (y ® 2) is
XY +Z+1)=2XY + XZ + X,
and the polynomial P,, associated with r; := (z @ y) ® (z® 2) is
2XY +XZ + 1.

Since all elements of A are greater than 1, we have P, >4 P, and thus
l1 >4 1. Note that, for A’ := N—{0}, we do not have P, >4/ P,, since,
in this case, X can also be assigned the value 1.

2. The polynomials

P, =4X+2Y +Z+3
associated with Iy := (z @ y) ® z and
P,=2X+2Y +Z+2

associated with 7o := z @ (y ® z) obviously satisfy P, >4 P,,, which
implies lg >4 72.

Thus, we have shown termination of R using a polynomial order.

In the example, it was easy to check (by hand) that the chosen polynomial
interpretation was such that P;, >4 P, holds for ¢ = 1,2. Unfortunately, it
is in general undecidable whether two terms [, r satisfy P, >4 P, for a given
polynomial interpretation. This is an easy consequence (Exercise 5.8) of the
undecidability of Hilbert’s 10th Problem [69]:

Instance: A polynomial P € Z[X3,...,X,] in n indeterminates with inte-
ger coefficients.

Question: Is there an n-tuple of non-negative integers for which the poly-
nomial P is 07

Thus, for a given polynomial order, it is in general not possible to decide
whether this order is suitable for showing termination of a given finite term
rewriting system. Nevertheless, there are automated methods that can (so-
metimes) be used to show P >4 @ for polynomials P,Q € N[Xj,...,X,]
[49]. Another way to obtain a decidable sufficient condition for P >4 @
could be to evaluate the polynomials in the real numbers R rather than
in N. In fact, Tarski’s decidability result for the first-order theory of real
numbers [239] implies that it is decidable whether P >p @ holds for a given
subset B of R that is definable in the first-order theory of real numbers (e.g.
B = {r eR|r >1}isdefinable). If A C B, then P >pg @ obviously implies
P>,40Q.

5.8 The interpretation method 109

Another disadvantage of polynomial order is that they cannot show ter-
mination of rewrite systems with “very long” reduction chains [115]:

Proposition 5.3.10 Assume that termination of the finite term rewriting
system R can be shown with a polynomial order. Then there ezists a constant
¢ > 0 in R such that for all terms t the length of every R-reduction sequence
starting with t is bounded by 92

Proof Let A be a polynomial interpretation such that [>4 r holds for all
[— r € R, let a be an arbitrary element of A, and let 7, : T(X,V) — A be
the homomorphism that assigns a to all variables. For a reduction sequence
t=1%t —Rpty g - >R t;m, we have t = t] >4 t3 >4 -+ >4 tm, and
thus also 74(t) = ma(t1) > ma(te) > -+ > ma(tm), by definition of > 4. This
implies that m < m4(t), which shows that it is sufficient to prove that there
exists a constant ¢ such that 7, (t) < 227 for all terms t.

We choose ¢ such that ¢ > k + logy d, where k and d are positive integers
such that a < d and

m
Pf(a'la"'aam) SdHa’f
i=1

for all m >0, f € ™ and ay,...,am € A. For a finite collection of poly-
nomials Py, such numbers &, d obviously exist. If the signature ¥ is infinite,
we may need to modify the polynomial interpretation first. In fact, only
the finitely many polynomials corresponding to function symbols occurring
in R must be considered. Assume that a given polynomial interpretation
can be used to show termination of R. Then we can modify this interpreta-
tion by associating all function symbols g not occurring in R with “small”
polynomials (e.g. of the form X --- X, where m is the arity of g). This
modified polynomial interpretation still shows termination of R, and there
exist appropriate numbers &, d.

We show g (t) < 921" by induction on the size of ¢. If ¢ is a variable, then
lt|=1and me(t) =a < d < 2°< 22" Ift = f(t1,...,tm), then we have

< d-[IZ, (22clt’|) (by induction)
— 9glogad gk-E 2lbl < 9eT ,2¢ltil < g2¢-I7 2eltil

22c.(1+E:';1|t,|) _ 22c|t| . 0
Thus, terminating term rewriting systems that have reduction chains whose
length exceeds this doubly-exponential bound cannot be shown to be termin-
ating with the help of a polynomial order. As a simple example, we consider

110 5 Termination

a term rewriting system that computes Ackermann’s function, which is well-
known not to be primitive recursive:

Example 5.3.11 Let ¥ = {a, s,0} where a is binary, s is unary, and 0 is a
constant symbol. The term rewriting system R 4. consisting of the rules

a(0,y) — s(y),
a(s(x),0) — a(z,s(0)),
a(s(z),s(y)) — a(z,a(s(x),y))

terminates (see Example 5.4.15 below), but the length of its reduction chains
cannot be bounded by a primitive recursive function in the size of the start-
ing term (Exercise 5.10).

Hofbauer and Lautemann [115] also show that their doubly-exponential
bound is tight by presenting a term rewriting system that can be shown to
be terminating with a polynomial order, and whose reduction chains have a
length that may reach the doubly-exponential bound:

Example 5.3.12 Let ¥ = {+, s,d, ¢,0} where + is binary, s, d, ¢ are unary,
and 0 is a constant symbol. The term rewriting system R consists of the
rules

z+0 — =z, z+s(y) — s(z+y),
d0) — 0, d(s(z)) — s(s(d(z))),
q(0) — 0, q(s(z)) — q(=z)+s(d(z)).

Let A=N-{0,1},and P, = X +2Y, Py, = X + 1, P; = 3X, P, = X3,
and Py = 2. It is easy to see that this polynomial interpretation shows
termination of R (Exercise 5.11).

Intuitively, R defines the arithmetic functions successor (s), double (d),
and square (¢) on non-negative integers. Thus, it is easy to see that the
term t,, := ¢"*1(s2(0)) can be reduced to q(s22n (0)), and the rule ¢(s(z)) —
q(z) + s(d(z)) alone can generate a sequence of 22" reduction steps starting
with this term. Consequently, the maximal length of a reduction sequence
starting with ¢, is at least 22" = g2ltnl = > 2291 for ¢ <1/5andn >1.

Exercises

5.7 Show that Lemma 5.3.7 would not hold if the carrier A of the poly-
nomial interpretation were allowed to contain 0.

5.8 Show that undecidability of Hilbert’s 10th Problem implies that the
following problem is undecidable:

5.4 Simplification orders 111

Instance: Two polynomials P,@ € N[Xj,...,X,] in n indetermin-
ates with non-negative integer coefficients, and a (decidable)
subset A of N.

Question: Does P >4 @ hold, i.e. is the value of P greater than the
value of @ for all valuations with elements in A.

Show that this implies that there exists a polynomial interpretation
A for which it is in general undecidable whether two terms [, r satisfy
l >4 r or not.

5.9 Let R be a finite term rewriting system and f be a function symbol.
For a term t, let |t|; denote the number of occurrences of f in ¢.
Show that there exists a positive integer k such that s —g t implies
|t|f < k|s|s for all terms s, .

5.10 Use the previous exercise and the fact that Ackermann’s function is
growing faster than any primitive recursive function to show that the
length of reduction sequences for the term rewriting system Racr of
Example 5.3.11 cannot be bounded by a primitive recursive function.

5.11 Show that the term rewriting system R of Example 5.3.12 terminates
using the polynomial interpretation introduced in the example.

5.12 Use the polynomial interpretation A with A := N — {0,1,2} and
Py =X 2 + XY to show that the term rewriting system

{F(f(z,9),2) — f(=2, f(y,2)), f(y,f(z,2)) = f(z,2)}

terminates.

5.4 Simplification orders

This second method of constructing reduction orders yields classes of or-
ders (e.g. Knuth-Bendix orders and recursive path orders) that can be used
in fully automated termination proofs, and that do not impose a doubly-
exponential bound on the length of reduction chains. In the following, let ¥
be a signature and V' be a (countably infinite) set of variables.

Definition 5.4.1 A strict order > on T'(X,V) is called a simplification
order iff it is a rewrite order and satisfies the following subterm property:

For all terms t € T'(2, V) and all positions p € Pos(t) — {€}, we have
t > tp.

Since > is a rewrite order, the subterm property already follows (Exer-
cise 5.13) from the following simpler property:

112 5 Termination

For all n > 1, all function symbols f € £(®), all variables z1,...,z, €
V,and all 4,1 <i <n, we have f(z1...,%;,...,Zn) > ;.

The definition of simplification orders replaces the requirement that > is
well-founded in the definition of reduction orders by the subterm property.
In order to show that this is a stronger requirement, i.e. that all simplifica-
tion orders are reduction orders, we introduce the notion of a “homeomor-
phic embedding” of terms and prove Kruskal’s Theorem for this embedding
relation.

Definition 5.4.2 Let X be a set of variables. The homeomorphic em-
bedding ., is a binary relation on 7T'(X, X) that is defined as follows:
s D>, t iff one of the following conditions holds:

1. s =x =t for a variable x € X.

2. s = f(s1,...,8,) and t = f(t1,...,t,) for a function symbol f € £,
and s1 Dy t1, .-+, 8n Bems tn-

3. s= f(s1,...,8y) for a function symbol f € £, and 8; B emp t for some
hl<js<n

For example, we have

f(f(h'(a)a h'(x))’ f(h(x)a a’)) [Zemb f(f(aa .’IZ),:L')

If we look at the tree representation of terms, then s >, t means that we
can map the nodes of the tree corresponding to ¢ into the nodes of the tree
corresponding to s so that the tree order (vertical ordering of the nodes), the
argument position, and the labelling of nodes are respected. The mapping
that yields the embedding in the above example is depicted in Fig. 5.2. The

SN N
a/ \\xﬁh/\h h/ \a

Fig. 5.2. The embedding f(f(a,),) < ey f(f(h(a), h(z)), f(h(2), a)).

homeomorphic embedding .., could also be defined (Exercise 5.14) as the

5.4 Simplification orders 113
reduction relation g, , induced by the rewrite system
Remp = {f(xla"'axn) — T4 | n> 1af € E(n)al SZSn}

Since R is obviously terminating, this shows that — Rompy = Pemp 18 8
well-founded partial order. Kruskal’s Theorem says that, for finite ¥ and
X, B, satisfies an even stronger property: it is a well-partial-order.

Definition 5.4.3 A partial order > on a set A is a well-partial-order
(wpo) iff for every infinite sequence ai, ag,as, ... of elements of A there
exist indices ¢ < j such that a; < a;.

We call an infinite sequence ay, ag, as, . .. good (w.r.t. >) iff there exist 1 < j
such that a; < a;. Otherwise, the sequence is called bad. Obviously, an
infinite chain a; > ag > as > --- cannot be good, which shows that every
wpo is well-founded. The converse need not be true, as can be demonstrated
by an infinite anti-chain, i.e. an infinite sequence of pairwise incomparable
elements.

The proof of Kruskal’s Theorem is facilitated by the following two lemmas.

Lemma 5.4.4 Let > be a wpo on the set A. Then every infinite sequence
a1, az,as, ... of elements of A has an infinite ascending subsequence, i.e.
there exist infinitely many indices i1 < ig < i3 < --- such that a;; = a;, X
Qig =% -

Proof Let ay,az,as, ... be an infinite sequence in A. We call an index m > 1
terminal iff there is no n > m such that a,, < a,. Assume that there are
infinitely many terminal indices m; < mg < mg < ---. Then the sequence
Gmy s Omg, Omg, - - - 1S bad, which contradicts the assumption that > is a wpo.
Thus, let p > 1 be such that all indices ¢ > p are not terminal. We define
i1 := p. Now, assume that i; < --- < 9 with a;; <X --- < q;, are already
defined. Since ix > p is not terminal, there exists an index ix11 > 9, with
a;, = a;,,- This defines the desired sequence by induction. O

Lemma 5.4.5 Let =1,..., >, be well-partial-orders on the sets As,...,A,.
Then the relation > that is defined component-wise by

(a1,...,an) = (ai,...,a,) iff a1 =1aiA... Nan =n a,
s a wpo on Ay X ... X Ay.

Proof Obviously, = is a partial order. To show that it is a wpo, let
(agl),...,agl)), (a{z),...,ag2),... be an infinite sequence in A; X ... X A,.
By Lemma 5.4.4, there exist infinitely many indices i1 < iz < i3 < --- such
that agil) =<1 agiz) =<1 ag”‘) <1 ---. By induction (on n) we may assume

114 5 Termination

that the component-wise order on Az x ... X A, is a wpo, and thus there
exist indices k < [such that ag““) =9 ag”) A A agf") =n an’). This yields
@, ... ol < (... o). O

Theorem 5.4.6 (Kruskal) Let ¥ be a finite signature and X be a finite
set of variables. Then the homeomorphic embedding ™., on T(X,X) is a
wpo.

Proof Assume to the contrary that there exists a bad sequence (w.r.t. >,,.;)
in T(X, X). We construct a minimal bad sequence by induction, where the
induction step works as follows:

Assume that terms t1,...,t, (n > 0) are already defined, and that
there exists a bad sequence starting with ¢1,...,t,. Note that forn =0
this just means that there exists a bad sequence, which we know by
assumption. Let ¢, 1 € T(XZ, X) be a minimal term (w.r.t. size) among
all terms that occur at position n+1 of a bad sequence in T'(X, X) that
starts with ¢1,...,t,. By our induction hypothesis, there exists at least
one such bad sequence. Obviously, the definition of ¢,,; implies that
there exists a bad sequence starting with ¢1,...,¢tn41.

In the limit, this defines an infinite bad sequence t1,t9,t3,.. ..

(1) For ¢ > 1 we define S; := 0, if t; is a variable. Otherwise, t; =
f,—(sgi), cee, s;?) for a function symbol f; € £(™) and terms sgi), e sg), and
we define S; := {s%, ..., s)}. We claim that B, isawpoon S := U;s; Si-

Assume that sj, s2, s3,... is a bad sequence in S, and let k£ be such that
s1 € Sk. Because P.,,, is reflexive, the sequence can only be bad if all s;
are distinct. Thus, since U := S7 U ... U Sk_1 is finite, there exists an [> 1
such that s; € S — U for all 7+ > [. Because the size of s; € S is smaller
than the size of t;, minimality of the sequence t1,t2,ts, ... implies that the

sequence
tl; s 7tk—-11 81, 81, Sl4+1,- - -

is good. Since the sequences t1,t2,t3,... and s1, 2, 83, ... are bad, this can
only be possible if there exist indices i € {1,...,k—1} and j € {1,1,1+1,...}
such that t; J.,, s;. If j = 1, then s; = 51 is a subterm of ¢, and thus
ti Jemp 85 = 81 yields ¢; ., ti. Because ¢ < k, this implies that t1,12,13,. ..
is good, which is a contradiction. Otherwise, let m be such that s; € Sp,.
Since j > I, we know that s; ¢ U, which yields ¢ < k < m. However,
sj € Sy, means that s; is a subterm of t,, and thus ¢; <., s; implies
t; 1 omstm- Because of i < m, this again contradicts the fact that t1, to, %3, . ..
was constructed as a bad sequence.

5.4 Simplification orders 115

(2) Consider the minimal bad sequence ti,t2,ts,... constructed above.
Since X UX is finite, there are infinitely many indices i; < i2 < i3 < --- such
that the root symbols of the terms t;,, ¢i,, is, . . . coincide. If this symbol is a
variable, then we have t;, = t;,, which implies t;; J.,; ti,. This contradicts
the fact that t1, to, t3, ... is bad.

Thus, assume that the root symbol of ¢;,,¢;,,%;,... is a function sym-
bol f € =™ for n > 0, ie. t, = f(sgz’),...,sg’)). Because of (1) and
Lemma, 5.4.5, the sequence (sgil), e, ssfl)), (sgiZ), e, ssfz)), ...is good w.r.t.
the component-wise order on .S x ... x S, which yields indices v < p such
that sgi”) Db sgz“) Ao A sg”) Do s,(f #) This implies t;, .y ti,. Because
v < p implies 4, < i,, this contradicts the fact that t1,%s,%3,... is bad.

(3) Summing up, we have shown that our original assumption that there
exists a bad sequence in T'(3%, X), which we used to construct the minimal

bad sequence t1,t2,t3, ..., leads to a contradiction. O

In the following, we use this theorem to prove that every simplification
order is well-founded. As a first step in this direction, we show that every
simplification order contains the homeomorphic embedding relation.

Lemma 5.4.7 Let > be a simplification order on T(X,V), and let s,t €
T(X,V) be terms. Then s D, t implies s > t.

Proof Assume that s >.,,, t. We consider the three cases in the definition
of ..., and prove s > t by induction on |s|.

(1) If s = x = t then s > t because > is reflexive.

(2) Assume that s = f(s1,...,8,) and t = f(t1,...,t,) for a function
symbol f € (™ and s; >4 t1,- .., 50 Dems tn. By induction, we obtain
§1 > t1,...,8n > tp. Since > is a rewrite order, this implies f(s1,...,8,) >
flt1, ... tn).

(3) Assume that s = f(s1,...,8,) for a function symbol f € £(and
8j Bempt for some j,1 < j < n. By induction, we obtain s; > t. In addition,
the subterm property of > yields s > s;, and thus s > ¢. O

Theorem 5.4.8 Let ¥ be a finite signature. Every simplification order >
on T(X,V) is a reduction order.

Proof By definition of simplification orders, it remains to be shown that
every simplification order is well-founded. Thus, assume that > is a simpli-
fication order on T'(X, V), and that ¢; > t2 > t3 > --- is an infinite chain in
T(Z,V).

(1) We show by contradiction that V(t1) 2 V(¢t2) 2 V(¢3) 2 --- holds.
Assume that z € V(1) — V(). For the substitution o := {z — t;}

116 5 Termination

we have, on the one hand, ¢; = o(t;) (since z does not occur in ¢;) and
o(ti) > o(tiy1) (since > is a rewrite order). On the other hand, ¢; is a
subterm of o(¢;+1), and thus the subterm property yields o (t;11) > t;. If we
put the two inequalities together, we obtain ¢; > t;, which is a contradiction.

(2) The first part of the proof shows that, for the finite set X := V(¢1),
all terms in the sequence t,t2,t3,... belong to T'(X,X). Since ¥ and X
are finite, Kruskal’s Theorem implies that this sequence is good, i.e. there
exist ¢ < j such that ¢; ., t;. Now, Lemma 5.4.7 yields ¢; < t;, which is

a contradiction since we know that ¢; > t;41 > --- > t;. O

The converse of this theorem is not true, i.e. there are reduction orders that
are not simplification orders.

Example 5.4.9 Let ¥ = {f, g} consist of two unary function symbols. We
consider the term rewriting system

R={f(f(z)) — f(9(f()))}-

Since R terminates (Exercise 5.17), we know that %R is a reduction order.
It cannot be a simplification order since f(g(f(z))) 2 ems f(f(x)) would then
imply f(9(f(x))) =r f(f(z)), which together with f(f(z)) —r f(9(f(2)))
contradicts termination of R.

In particular, R is an example of a terminating term rewriting system
that cannot be shown to be terminating with the help of a simplification
order, since f(g(f(z))) > f(f(z)) for any simplification order >.

For reduction orders that are total on ground terms, the converse of The-
orem 5.4.8 holds in a restricted form.

Proposition 5.4.10 Let > be a reduction order on T'(X,V) that is total on
ground terms. Then > satisfies the subterm property for ground terms, i.e.,
for all t € T(X,0) and all p € Pos(t) — {e}, we have t > t|p.

Proof Let t € T(X,0), p € Pos(t) — {€}, and assume that ¢ > ¢|, does not
hold. Since p # €, we also have t # t|,. Thus, totality of > on ground terms
implies t|, > t. This contradicts the fact that > is a well-founded rewrite
order since it yields the infinite chain

tlp >t = t[tlplp > t[t]p > tt[tlplp > - - =

In the remainder of this section, we introduce three methods for constructing
specific simplification orders.

5.4 Simplification orders 117

5.4.1 Polynomial simplification orders

In Section 5.3, the restriction to polynomials with coefficients in N was ne-
cessary to ensure well-foundedness of the polynomial orders obtained. Sim-
plification orders offer another way to obtain well-foundedness: the subterm
property must be satisfied. Thus, it becomes possible to employ polynomi-
als over the reals, provided that one ensures that they yield a simplification
order.

Definition 5.4.11 Let X be a finite signature. A polynomial interpre-
tation over R consists of a nonempty domain A C R, and a mapping of
the function symbols f € (™ to polynomials P; € R[Xj, ..., X,] such that
the following properties are satisfied:

1. For all ay,...,an € A, we have Pf(ay,...,a,) € A.
2. For alli,1 <i<mn,and all a,b,a1,...,a;—1,0;41,--.,an € A,

a>b= Ps(ar,...,8i-1,8,8i41,...,an) > P¢(a1,...,0;-1,b,ai41,...,a5).
3. Foralli,1 <i<mn, and all a,a1,...,a;-1,8;41,-..,0, € A,
P¢(ay,...,i-1,8,8i41,...,0n) > a.

The mapping of function symbols to polynomials is extended to terms in the
obvious way. For polynomials P,Q € R[X1,...,X,] we write P >4 Q iff
P(ay,...,an) > Q(a,...,a,) for all ay,...,a, € A. The polynomial sim-
plification order on T'(%, V) induced by such a polynomial interpretation
over R is defined by

s>t iff P;>4P.

It is easy to see that this definition implies that every polynomial simplifi-
cation order is indeed a simplification order.

If the set A is definable in the first-order theory of real numbers, the
conditions 1, 2 and 3 can be checked effectively (using Tarski’s decision
procedure [239]) for any given mapping of function symbols to polynomials.
In addition, for given terms s,t, the question “Ps; >4 P;?” is decidable.
Thus, it is decidable whether a given polynomial simplification order with
definable domain can be used to show termination of a given finite term
rewriting system.

It is not even necessary to determine a mapping from function symbols
to polynomials by hand. Assume that we have fixed a definable domain A
and an upper bound for the degree k of the polynomials that may be em-
ployed. Then Tarski’s decision procedure can be used to determine whether
termination of a given finite term rewriting system can be shown with a

118 5 Termination

polynomial simplification order that has domain A and employs only poly-
nomials whose degree is bounded by k. For this purpose, the coefficients
of the polynomials are treated as existentially quantified variables in the
decision procedure. The main problem with this approach is, of course, the
high complexity of Tarski’s decision procedure for the first-order theory of
real numbers.

5.4.2 Recursive path orders

The main idea underlying recursive path orders is that two terms are com-
pared by first comparing their root symbols, and then recursively comparing
the collections of their immediate subterms. These collections can be seen
as unordered multisets (which yields the multiset path order), or as ordered
tuples (which yields the lexicographic path order), or one can employ a com-
bination of both (which yields the recursive path order with status). In the
following, we consider the lexicographic path order in more detail.

Definition 5.4.12 Let X be a finite signature and > be a strict order on X.
The lexicographic path order >, on T(%,V) induced by > is defined
as follows: s >, t iff

(LPO1) t € Var(s) and s # t, or
(LPO2) s = f(s1,.--,5m), t =g(t1,...,tn), and
(LPO2a) there exists 4,1 < ¢ < m, with s; >4, ¢, or
(LPO2b) f>gand s> t; forall j,1<j<n,or
(LPO2c) f = g, 8 >po t; for all j,1 < j < n, and there exists
1,1 < i < m, such that s; =t1,...,s;_1 = t;—1 and s; >po ti-

This definition is recursive since in (LPO2a), (LPO2b), and (LPO2c) it
refers to the relation >;,, to be defined. Nevertheless, >,, is well-defined
since the definition of s >, t only refers to the relation >,,, applied to pairs
of terms that are smaller than the pair s,¢. In (LPO2a), >,,, stands for the
reflexive closure of >,, (and not for the lexicographic path order induced by
>). In (LPOZ2c), the collections of immediate subterms are compared with
respect to >, the n-fold lexicographic product of >, with itself, which
explains the name lezicographic path order. Before showing that >, is a
simplification order, we consider some examples.

Example 5.4.13 Let ¥ = {f,4,e}, where f is binary, 7 is unary, and e is
a constant, and assume that i > f > e.

1. f(z,e) >upo x by (LPO1).
2. i(e) >y e by (LPO2a) since we have e >, e.

5.4 Simplification orders 119

3. i(f(z,y)) >wo f(i(y),i(x)) by (LPO2b) since ¢ > f and, by (LPO2c),
i(f(x,y)) >ipo i(y) and i(f(z,y)) >po i(z). The preconditions for case
(LPO2c) are satisfied since we have i(f(z,y)) >upo ¥, ((f(Z,¥)) >po
and f(z,y) >0 ¥, f(z,y) >1po T by (LPO1).

4. f(f(z,9),2) >ipo f(=, f(y,2)) by (LPO2c) with i = 1:

e f(f(z,v),2) >po z: this holds because of (LPO1).
e f(f(z,v),2) >po f(y,2): again, we have (LPO2c) with ¢ = 1:

- f(f(xay)az) >p0 ¥ and f(f(z,y),2) >ipo 21 by (LPO1).
— f(z,9) >ipo y: by (LPO1).
o f(z,y) >po x: by (LPOL).

Theorem 5.4.14 For any strict order > on X, the induced lexicographic
path order >, is a simplification order on T'(X,V).

Proof (1) Before we can show transitivity, we need an auxiliary result, which
we prove by induction on |s| + |¢|:

8§ >ipo t implies Var(s) 2 Var(t).

In (LPO1), t = z is a variable that occurs in s and thus Var(t) = {z} C
Var(s). In (LPO2a), s; >y t yields Var(s) 2 Var(s;) 2 Var(t) by
induction. In (LPO2b) and (LPO2c), s >, t; for all j,1 < j < n,
yields Var(s) 2 Var(t;) for all j,1 < j < n, by induction, and thus
Var(s) 2 Uj=y Var(t;) = Var(t).

(2) To show transitivity, we assume that r >, s and s >, t. We prove
T >4 t by induction on |r| + |s| + [t|. Obviously, 7 >,, s implies that r is
not a variable, and s >, t implies that s is not a variable.

First, assume that ¢ = z is a variable. To obtain r >, t by (LPO1), it is
sufficient to show that the variable z occurs in r. Because of s >, t = «,
we know that x occurs in s. In addition, as we have shown in (1), r >, s
implies Var(r) 2 Var(s), and thus z € Var(r).

Now, assume r = f(ry,...,7), $ = g(81,...,8m), and t = h(t,...,tn).
First, we consider the two cases where one of the inequalities is due to
(LPO2a):

e 7 >, s is an instance of (LPO2a), i.e. there exists 4,1 < i < [, such
that r; >y, s. By induction, we obtain r; >, t, and thus r >, t
holds by (LPO2a).

® s >, t is an instance of (LPO2a), and r >, s is an instance of
(LPO2b) or (LPO2c). We have r >, s; for all j,1 < j < m, and
8i 2ipo t for some ¢,1 < 4 < m. By induction, r >, 8; >0 t yields
T >ipo t.

120 5 Termination

Thus, we may assume that both inequalities are due to (LPO2b) or (LPO2c).
This implies f > h and s >, t; for all j,1 < j < [. By induction, r >,
8 >ipo t; yields © >y, t; for all j,1 < j < 1. If f > h, this is sufficient to
obtain r >,, t. Otherwise, we have f = g = h, and thus both inequalities are
due to (LPO2c). Now, r >, t can be shown as in the proof of transitivity of
the lexicographic product (where the induction hypothesis yields transitivity
for the subterms).

(3) Because we already know that >, is transitive, the subterm property
is proved if we succeed in showing that f(...,s,...) >, s for all function
symbols f and terms s. If s = x is a variable, then f(...,s,...) >4, s is an
instance of (LPO1). Otherwise, it is an instance of (LPO2a) since s >, s.

(4) Closure under substitutions, i.e. s >y, t implies o(s) >, o(t) for all
terms s,t and all substitutions o, is shown by induction on |s| + [¢|. For
(LPO1), t = z is a variable occurring in s and s # t. Thus, o(t) is a
strict subterm of o(s), and we obtain o(s) >, o(t) as a consequence of the
subterm property. In (LPO2a), s; >, t implies o(s;) >y, o(t) by induction.
Similar induction arguments apply in the remaining two cases.

(5) To show compatibility with X-operations, we assume that s >y, t,
feX® and si,..., 81,841,550 € T(Z,V). Then

F(s15-+,8i-1,8,8i41, -5 8n) Sipo [(815- -, 8i-15t,8i41,- -, 8n)
is obtained as an instance of (LPO2c): the subterm property yields
f(317 ey 8i—158, 8541y S'n) >lpo Sj

forall j € {1,...,i—1,i+1,...,n}, and f(s1,...,8i=1, 8, Si+1,---»5n) Sipo
s. Together with the assumption s >, ¢, this last inequality implies
f(s1,--+,8i—-1,8, Sit1,---,8n) >ipo t by transitivity. Finally, s; = sq,...,
8i—1 = 8;—1 and s >, t are obvious.

(6) In order to show irreflezivity of >,,, we assume that there exists a
term s such that s >, s, and try to refute this assumption by induction on
the size of s. If s = z is a variable, then the only possible case is (LPO1).
However, the condition “s # s” necessary for this case to apply is obviously
not satisfied.

Thus, assume that s = f(s1,...,8,). Obviously, (LPO1) and (LPO2b)
cannot apply. For (LPO2c), there must exist an i,1 > ¢ > n, such that
8i >ipo Si- By induction, we know that this is not possible. For (LPO2a),
we have on the one hand an index i,1 < ¢ < n, such that s; >, s. On
the other hand, the subterm property yields s >;,, s;. Transitivity implies
8i >po 8i, Which contradicts our induction hypothesis. O

5.4 Simplification orders 121

One advantage of lexicographic path orders over polynomial orders is that
they do not impose a doubly-exponential bound on the length of reduction
sequences. In fact, they can even be used to show termination of term
rewriting systems with reduction sequences whose length cannot be bounded
by a primitive recursive function:

Example 5.4.15 Termination of the term rewriting system R 4.k introduced
in Example 5.3.11 can be shown using the lexicographic path order that is
induced by a > s.

A further nice feature of lexicographic path orders is the fact that it is
decidable whether termination of a given finite term rewriting system can
be shown with the help of such an order.

Proposition 5.4.16 Let ¥ be a finite signature, s,t € T(X,V), and R a
finite term rewriting system over T'(X,V).

1. For a given lexicographic path order, s >, t can be decided in time
polynomial in the size of s,t.

2. The question of whether termination of R can be shown using some lex-
icographic path order on T(X,V) is an NP-complete problem.

The first statement of the proposition is an easy consequence of the defi-
nition of lexicographic path orders (Exercise 5.25). An NP-algorithm for
the problem addressed in the second statement of the proposition simply
guesses an order > on ¥, and then uses the polynomial algorithm of the
first statement to check whether this guess was correct. NP-hardness of the
problem for the multiset path order is shown in [149]. This proof can easily
be adapted to the lexicographic path order.

The applicability of this approach for showing termination can be in-
creased by allowing for different ways of comparing the collections of sub-
terms in case (LPO2c) of Definition 5.4.12. Instead of comparing the tuples
(81,---,8m) and (t1,...,tn) lexicographically from left to right, one can also
define an order where they are always compared lexicographically from right
to left. More generally, one can associate each function symbol with a fixed
permutation of its arguments, and then compare the tuples of immediate
subterms lexicographically along this permutation. To obtain the multiset
path order >,,,, induced by a strict order > on X, one considers the mul-
tisets {s1,...,8m} and {t1,...,tm}, and compares them with the multiset
order induced by >,,,,. The fact that this yields a well-defined simplifica-
tion order can be shown by a proof that is similar to the one for >, [72].
In the recursive path order with status, these different approaches are
combined: each function symbol is equipped with a status that determines

122 5 Termination

whether the collections of subterms are compared by the multiset order,
or lexicographically with respect to a permutation associated with the func-
tion symbol. The following is an example of a rewrite system where only the
combination of the multiset and the lexicographic status yields a recursive
path order that can show its termination:

Example 5.4.17 Let s be a unary and +, * be binary function symbols.
We consider the term rewriting system R that consists of the rules

(z+y)+z — z+(y+2),
z*s(y) — T+ (y*z).

The first rule can only be oriented in this direction with a recursive path
order that assigns lexicographic status (from left to right) to +. In order to
orient the second rule from left to right, we need * > +. In addition, z*s(y)
must be larger than y * z, which can only be achieved by assigning multiset
status to *. Note that the additional rule

z+s(y) — s(y +z)

would require + > s and multiset status for +, which implies that all three
rules together cannot be shown to be terminating with a recursive path order
with status.

5.4.3 Recursive path orders in ML

Building on the type of terms (see Section 4.7) and the lexicographic order
lex already defined, the definition of >, is easily turned into ML code:

(x (string * string -> order) -> term * term -> order *)
fun lpo ord (s,t) = case (s,t) of
(s, V) =>if s =t then EQ
else if occurs z s then GR (*LPO1x) else NGE
| (V_, T_.)=>NGE
I (T(f,ss), T(g,ts)) => (xLPO2x)
if forall (fn si => lpo ord (si,t) = NGE) ss
then case ord(f,g) of
GR => if forall (fn ti => lpo ord (s,ti) = GR) ts
then GR (*LPO2bx*) else NGE
| EQ => if forall (fn ti => lpo ord (s,ti) = GR) ts
then lez (lpo ord) (ss,ts) (*LPO2cx)
else NGE
| NGE => NGE
else GR (*LPO2ax);

If ord implements the order > on the function symbols, then lpo ord imple-
ments >jp,.

5.4 Simplification orders 123

Although we have already indicated the places in the code which corre-

spond to particular clauses in the definition of the lexicographic path order,
the following comments should answer any remaining questions.

The branches returning NGE are the result of analysing in which cases
neither s >y, t nor s = ¢ holds. For example, if s is a variable and
t is not, then s >y, t cannot hold because (LPO1) requires ¢ to be a
variable and (LPO2) requires s not to be a variable. This justifies the line
(Vv .,T) => NGE.

Case (LPO2a) is slightly disguised because we have replaced the test 31 <
i <m. 8 2ppo t by V1 <i <m. 85 Zipo t.

Case (LPO2c) is simplified by appealing to the functional lez for com-
paring the subterms lexicographically. Note that the definition of >y,
avoids the use of (>ip,)ier because (>ipo)ier is only well-defined if >, is
a strict order, something we do not yet know while defining >,.

The precise implementation of the parameter ord is not germane to the

subject of this book. Suffice it to say that the most straightforward repre-
sentation is a list of pairs (f,g) meaning f > g. There should also be a
function to compute the transitive closure of such a list, which obviates the
need to supply (f,h) in addition to (f,g) and (g,h).

The recursive path order with status is a generalization of the lexicogra-

phic and multiset path orders. At the implementation level it means that
rpo is an abstraction of lpo w.r.t. the functional lez:

(* rpo: (string -> (term * term -> order) -> term list * term list => order)
-> (string * string -> order) -> term *x term -> order *)
fun rpo stat ord (s,t) = case (s,t) of
(s, Vz) => if s = t then EQ
else if occurs r s then GR else NGE
| (V_, T_.)=>NGE
| (T(f,ss), T(g,ts)) =>
if forall (fn si => rpo stat ord (si,t) = NGE) ss
then case ord(f,g) of
GR => if forall (fn ti => rpo stat ord (s,ti) = GR) ts
then GR else NGE
| EQ => if forall (fn ti => rpo stat ord (s,ti)
then (stat f) (rpo stat ord) (ss,ts)
else NGE
| NGE => NGE
else GR;

GR) ts

n

The additional parameter stat maps each function symbol to the appropriate
subterm order, e.g. as in (fn "f" => lez | "g" => mul, ...).

Note that rpo is one of the rare examples of a natural third-order func-

tion: one of its parameters is a function which itself takes a function as an
argument.

124 5 Termination

5.4.4 Knuth-Bendix orders

Let X be a finite signature. A Knuth-Bendix order on T'(X, V) is determined
by a strict order > on ¥ and a weight function w: XUV — R(J{ , Where
R denotes the set of non-negative real numbers. We call such a weight
function w admissible for > iff it satisfies the following properties:

1. There exists wo € Ry — {0} such that w(z) = wo for all variables z € V
and w(c) > wp for all constants ¢ € »(0),

2. If f € ¥ is a unary function symbol of weight w(f) =0, then f is the
greatest element in ¥, i.e. f > g for all g € X.

The weight function w can be extended to a function w : T(X,V) — R{ as
follows:
w(t):= Y w@)-fth + Y wlf)- s,
z€Var(t) fex
where |t|; (|t|f) denotes the number of occurrences of the variable = (function
symbol f) in t. Thus, w(t) simply adds up the weights of all occurrences of
symbols in .

Definition 5.4.18 Let ¥ be a finite signature, > be a strict order on %,
and w: XUV — Rg be a weight function. The Knuth-Bendix order >,
on T'(X,V) induced by > and w is defined as follows: for s,t € T(X,V), we
have s >y, t iff

(KBO1) |s|z > |t|; for all z € V and w(s) > w(t), or

(KBO2) |s|z > |t| for all z € V, w(s) = w(t), and one of the following
properties holds:

(KBO2a) There are a unary function symbol f, a variable z, and
a positive integer n such that s = f"(z) and t = z.

(KBO2b) There exist function symbols f, g such that f > g and
s=f(s1,---,8m), t =g(t1,...,tn).

(KBO2c) There exist a function symbol f and an index i,1 <14 <
m, such that s = f(s1,...,8m), t = f(t1,...,tm), and s1 =
t1,...,8_1 =t;—1 and 8; > t;.

Thus, the Knuth-Bendix order makes a lexicographic comparison, where
first the weights of the terms are considered, second their root symbols, and
third recursively the collections of the immediate subterms. The order is si-
milar to lexicographic path orders in that it compares the root symbols with
respect to a given precedence order >, and then recursively the collections of
immediate subterms. The main difference between the Knuth-Bendix order
and the lexicographic path order is the fact that the former employs a weight

5.4 Simplification orders 125

function. Because of this use of the weight function, the variable condition
“|s|z > |t|5 for all z € V” becomes necessary. Indeed, without this condition
the order would not be closed under substitutions (see Example 5.2.2).

Another peculiarity of the Knuth-Bendix order is the treatment of unary
function symbols of weight zero. First, note that (KBO2a) can only apply if
f has weight 0. Second, admissibility of w for > makes sure that there can
be only one such symbol, and that it must be the greatest element in ¥ with
respect to >. The following proposition shows that without this condition,
the Knuth-Bendix order would not be a simplification order.

Proposition 5.4.19 Assume that f € XU, w(f) =0, and that there exists
g € X —{f} such that f # g. Then the Knuth-Bendiz order induced by >
and w does not satisfy the subterm property.

Proof Let t = g(t1,...,t,) be an arbitrary term with root symbol g, and
define s := f(t). Because of w(f) = 0, we have w(s) = w(t). Obviously,
(KBO2a) and (KBO2c) cannot apply. In addition, since f % g, (KBO2b)
does not apply. Thus s is not greater than its strict subterm ¢ with respect
to the Knuth-Bendix order induced by > and w. O

One might ask why unary symbols of weight zero are allowed at all. The
reason is that otherwise termination of rules like i(f(z,y)) — f(i(y),i(z))
could not be shown with the help of a Knuth-Bendix order. More generally,
it can be shown that the power of Knuth-Bendix orders would be severely re-
stricted when disallowing unary symbols of weight zero (see Example 5.4.25
below and the remark following that example).

Theorem 5.4.20 Let > be a strict order on &, and w : TUV — R{ be a
weight function that is admissible for >. Then the Knuth-Bendix order >y,
on T(X,V) induced by > and w is a simplification order.

We split the somewhat lengthy task of proving this theorem into proving four
lemmas. The first lemma states some auxiliary results, the second lemma
shows that >, is a strict order, the third shows that >, is compatible with
Y-operations, and the fourth shows that >, is closed under substitutions
and satisfies the subterm property.

Lemma 5.4.21 Let w be an admissible weight function for >, and let >y,
be the Knuth-Bendiz order induced by > and w.

1. For all terms t we have w(t) > wp > 0.

2. Assume that w(s) = w(t), and that t is a strict subterm of s. Then there
exist f € B and a positive integer k such that w(f) = 0 and s = f*(t).

8. Let x be a variable and s be a term. Then T >y, s cannot hold.

126 5 Termination

4. Let x be a variable and s # = be a term that contains x. Then we have
S >kbo .

Proof (1) Because w is admissible, we know that w(c) > wy for all constants
¢, w(z) = wo for all variables z, and wp > 0. In addition, any term must
contain at least one variable or constant.

(2) We prove the claim by induction on the size of s. Since ¢ is a strict
subterm of s, there are an n > 1 and a function symbol f € £(™ such that
s = f(s1,...,8n) and t is a subterm of s; for some i,1 < i < n. First, we
show that n =1 and w(f) =0:

e Assume that n > 1. We have w(s) = w(f)+3"7-; w(s;), and we know
that, for all j, w(s;) > wo > 0. Thus, n > 1 implies w(s) > w(s;),
and since ¢ is a subterm of s;, w(s;) > w(t). This contradicts our
assumption that w(s) = w(t).

e Assume that w(f) > 0. Thus, even for n = 1, w(s) = w(f) +
i1 w(s;) yields w(s) > w(s;) > w(t).

This shows that s = f(s’) for the unique unary symbol f of weight 0 and
a term s’ that has t as subterm. For s’ = t we are done. Otherwise,
we can apply the induction hypothesis since t is a strict subterm of s,
w(s’) = w(s) = w(t), and |s'| < |s].

(3) We know that w(s) > wo = w(z). Thus, T >k $ is only possible
if w(s) = w(x), i.e. if (KBO2) applies. However, in all three subcases of
(KBO2), the larger term has a function symbol as root symbol.

(4) Since s contains z, we have w(s) > w(z), |s|z > 1 = |z|s, and for
all variables y # z, |s|y > 0 = |z|,. If w(s) > w(x), then we are done. If
w(s) = w(z), then part 2 of the lemma implies that s = f*(z) for a unary
function symbol f and a positive integer k. Thus, (KBO2a) applies. O

Lemma 5.4.22 Let w be an admissible weight function for >. Then the
Knuth-Bendiz order >y, tnduced by > and w is a strict order.

Proof (1) Assume that >, is not irreflexive, and let s be a term of minimal
size such that s >y, s. Obviously, we have w(s) = w(s), and s has the
same root symbol as s. Thus, the only case that could apply is (KBO2c).
However, in this case we obtain s; >y, s; for a strict subterm s; of s, which
contradicts minimality of s.

(2) To show transitivity, assume that r >y, s and s >y, t. We prove
T > t by induction on the size of r.

e From r >4, s and s >, t we can deduce that, for all variables z,
||z > ||z and |s|g > |t|z hold. Thus, we have |r|; > |t|z, which
means that the variable condition is satisfied.

5.4 Simplification orders 127

e In addition, 7 >k, s and s >g, t yield w(r) > w(s) and w(s) > w(t),
which implies w(r) > w(t).
If w(r) > w(s) or w(s) > w(t), then we are done since this yields w(r) >
w(t). Thus, we may assume that w(r) = w(s) = w(t), i.e. 7 >, s and
$ >bo t are both instances of (KBO2).

For r >k, 8, we cannot have (KBO2a) since s >, t implies that s is not a
variable (see Lemma 5.4.21). Thus, both r and s have a function symbol as
root symbol, i.e. r = f(r1,...,r;) and s = g(s1,.. ., $m) for function symbols
f,g such that f > g.

If s >k t is an instance of (KBO2a), then t = z for a variable z, and
|7|¢ > |t|; implies that z occurs in . Since the root symbol of r is a function
symbol, we have r # z, and thus Lemma 5.4.21 yields r >, t.

It remains to consider the case where s >, t is an instance of either
(KBO2b) or (KBO2c). In this case, we know that there exists a function
symbol h such that ¢ > h and ¢t = h(t1,...,tn). If f > g or ¢ > h, then we
have f > h, which yields 7 >y, t by (KBO2b). Thus, assume that f = g =
h, i.e. 1 >rpo s and s >, t are instances of (KBO2c): there exist %, j such

that m = s1,...,7i—1 = 8;—1 and r; > 8;, and s1 = t1,... y8j—1 = tj_1,
and s; >, t;. By induction, we know that transitivity of >, already holds
for these subterms, and thus we obtain r >, t by (KBO2c). O

Lemma 5.4.23 Let w be an admissible weight function for >. Then the
Knuth-Bendiz order >, that is induced by > and w is compatible with
Y.-operations.

Proof Assume that s; > S2, and that f € ¥(™ is an n-ary function
symbol. We must show that

f(tl, ceoybic1,81, i1, - ,tn) > kbo f(tl, ceoy tic1, 82, L, .- ,tn) (*)

holds for all 4,1 <% <mn, and all terms t1,...,t;—1,ti+1,-.-,tn.

From s1 >y $2 we can deduce that s; and s9 satisfy the variable condition
in the definition of the Knuth-Bendix order, i.e. |s1|y > |s2], for all variables
x. Obviously, this implies

|f(t1,...,ti_l,sl,ti+1,...,tn)|x Z |f(t1,.. ~ati—1,32atz’+1,-~,tn)|a:

for all variables z. In addition, if w(s1) > w(s2), then

w(f(tl, coostiz1, 81, b4, - - ,tn)) > w(f(tl, vy tiz1, 82, by, - - ,tn)),

which yields (*). Thus, assume that w(s;1) = w(sg). This implies

’w(f(tla oo)ti—la Sl,ti+1a oo >tn)) = 'U)(f(tl, e 1ti—17 327ti+1a s atn))a

128 5 Termination

and since the root symbols of the two terms are identical, (x) holds iff
(KBO2c) applies. This is trivial since t1 = t1,...,t—1 = t;i—1, and 81 >0 S2.
O

Lemma 5.4.24 Let w be an admissible weight function for >. Then the
Knuth-Bendiz order >y, induced by > and w is closed under substitutions
and satisfies the subterm property.

Proof (1) Assume that s; >k, S2, and let o be a substitution. We show
0(81) >kpo 0(s2) by induction on the size of s;.

First, we consider the variable condition. Let X := Var(s1) U Var(sz).
Because of s1 >, 52, Wwe know that |s1|, > |s2|y for all y € X. For an
arbitrary variable x, we have

lo(s1)z — o(s2)]e = Z lo()lz - (Is1ly — |s2ly) >0
yeX

since |o(y)|; > O for all variables = and |s1|y — |s2]y > 0 for all y € X. Thus,
the variable condition is satisfied.
A similar computation can done for the weights:

w(o(s1)) = w(o(s2)) = w(s1) —w(sz) + Y (Isly — Is2ly) - (w(o(y)) — wo).
yeX

We know [si]y — [s2]ly > 0 for all y € X, and w(o(y)) — wo > 0 by
Lemma 5.4.21. Consequently, w(s1) > w(s2) implies w(o(s1)) > w(o(s2)),
which yields o(s1) >kbo (82).

Thus, assume that w(s1) = w(s2), and hence w(o(s1)) > w(o(s2)). If
w(o(s1)) > w(o(sz2)), then o(s1) >kpo o(s2). Otherwise, we consider the
three subcases of (KBO2):

® 51 > 82 holds by (KBO2a), i.e. s1 = f¥(z) and sy = z for a positive
integer k, a unary function symbol f of weight 0, and a variable z.
We show 0(81) > 0(82) by induction on the size of o(z).
If o(x) =: y is a variable, then o(s1) = f*(y) >wo ¥ = o(s2) holds
by (KBO2a). Otherwise, o(z) = g(t1,...,t,) for a function symbol
g € M, If f # g, then admissibility of w w.r.t. > implies f > g,
and thus o(s1) = fE(g(t1,--.,tn)) >kso g(t1,.-.,ts) = o(s2) holds
because of (KBO2b). If f = g, then we have (KBO2c), and it remains
to be shown that f¥(t;) > t1. If we take a substitution o’ with
o’(z) = t1, then the induction hypothesis (for ¢’(z), which is smaller
than o(z)) yields f¥(t1) = 0/(51) >kso 0’ (52) = t1.

® 51 > S2 holds by (KBO2b), ie. 51 = f(s(l) . s%)) and sg =
g(sgz), ey 3%2)) for function symbols f, g with f > g. Obviously, o(s1)

5.4 Simplification orders 129

has root symbol f and o(s2) has root symbol g, and thus o(s1) > ko
o(s2) by (KBO2D).
® 51 > S2 holds by (KBO2c), ie. 81 = f(sgl), s%)) and sy =

f (3&2), (2)) for a function symbol f, and there exists an 7,1 <
i<m, such that 3(1) (2) . 51)1 = sf)1, and s(l) > kbo s§2). This
implies o (s 5)) o(s (2)), O ((v 1) = o(s z(._)l), and by induction

a(sgl)) > kbo a(sz()) (since sgl) is smaller than s;). Thus, o(s1) =

f(a(sgl)),...,a(s%))) > kbo f(a(ng)),...,a(sg))) = o(s2) holds by
(KBO2c).

(2) To show the subterm property, we recall that s >, « for all variables
z and terms s # x that contain z (Lemma 5.4.21). This, together with the
fact that >, is closed under substitutions, obviously implies the subterm
property. O

This completes the proof of Theorem 5.4.20.

As for recursive path orders, one advantage of Knuth-Bendix orders over
polynomial orders is that they can be used to show termination of rewrite
systems with reduction sequences of more than doubly-exponential length.

Example 5.4.25 For the term rewriting system R consisting of the rules

s(x)+(y+2) — z+(s(s(y)) +2),
s(x1) + (z2+ (z3+24)) — 1+ (23 + (22 + 24)),

the length of its reduction chains cannot be bounded by a primitive recursive
function in the size of the starting term [115]. Thus, R cannot be shown to
be terminating with the help of a polynomial order. Termination of R can,
however, be proved using the Knuth-Bendix order induced by s > + and
w(s) =w(+) =0,wy = 1.

In this example, it was obviously necessary to use a Knuth-Bendix order
that assigns weight 0 to the unary function symbol s. More generally, it can
be shown [115] that a Knuth-Bendix order where all unary function symbols
have weight greater than 0 yields an exponential upper bound for the length
of reduction sequences.

Knuth-Bendix orders also share another nice feature with lexicographic
path orders: they are decidable, and it is decidable whether termination of
a finite term rewriting system can be shown using such an order.

Proposition 5.4.26 Let ¥ be a finite signature, s,t € T(X,V), and R a
finite term rewriting system over T(X,V).

130

5 Termination

1. For a given Knuth-Bendiz order, s >y, t can be decided in time polyno-
mial in the size of s,t.

2. The question of whether termination of R can be shown using some
Knuth-Bendiz order on T(X,V) is decidable.

The first part of the proposition is an immediate consequence of the de-
finition of Knuth-Bendix orders. The second is shown in [79], where an
algorithm for calculating the optimal solutions of a system of linear inequa-
lities over R is employed to compute appropriate weights for the function
symbols.

5.13

5.14

5.15

5.16

5.17
5.18

5.19

5.20

Exercises

Let > be a rewrite order. Show that the subterm property follows
from the following simpler property:

f(..,z,...)>zxzforall fe X andallz € V.

Show that the reduction relation g, _, induced by the rewrite system
Rems = {f(21,...,2n) =z | n>1,f € 2™ 1< <n}

coincides with the homeomorphic embedding B.,.;.

In the proof of Theorem 5.4.8 we have used the fact that the ho-
meomorphic embedding >.,,;, is a well-partial-order. Why is it not
sufficient for the proof just to know that ., is a well-founded order?
Let A be a monotone polynomial interpretation. For P,@Q € N[Xj,...,
Xn], we write P >4 Q iff P(a1,...,a,) > Q(a1,...,a,) holds for all
ai,...,ayn in A. Note that >4 is not the reflexive closure of >4.
Show that s D>, t implies Ps >4 P,. Show that this implies that a
polynomial order cannot be used to prove termination of a TRS R if
there are terms s,t such that s & rtand s<d,,;t.

Show that the TRS R := {f(f(z)) — f(9(f(x)))} is terminating.
Show that there exists a reduction order > that cannot be extended
to a reduction order that is total on ground terms. (Hint: consider
the reduction order of Example 5.4.9, and Proposition 5.4.10.)

Show that every reduction order that is total on ground terms can be
extended to a simplification order. (Hint: consider Exercise 5.6.)

Let X be a finite signature and let > be a strict linear order on X.

(a) Let >y, be the lexicographic path order induced by >. Then
>po is total on ground terms.

5.21

5.22

5.23

5.24

5.25
5.26

5.27

5.28

5.5 Bibliographic notes 131

(b) Let w be a weight function that is admissible for >, and let
>rbo De the Knuth-Bendix order that is induced by w and >.
Then >4, is total on ground terms.

Show that it is not possible to prove termination of the term rewriting
system R of Example 5.4.25 with the help of a lexicographic path
order.

Show that it is not possible to prove termination of the term rewriting
system R := {f(f(z)) — g9(z), 9(9(z)) — f(z)} with the help of a
lexicographic path order.

Show that the condition “s >, t; for all j,1 < j <n” in (LPO2c) is
not necessary when using the multiset order for comparing the collec-
tions of subterms. Demonstrate by an example why it cannot be
dispensed with for the lexicographic path order.

Show that the condition “s >, t; for all j,1 < j < n” in (LPO2c)
of the definition of the lexicographic path order can be replaced by
“s >ipo tj for all j,4 < j < n”, where ¢ is such that s; =t1,...,8-1 =
ti—1 and s; > Ipo t;.

Show that “s >, t” can be decided in time O(|s| - |¢|).

Prove termination of the term rewriting system R of Example 5.3.11
using a lexicographic path order. Show that it is not possible to prove
termination of R using a Knuth-Bendix order.

Show that termination of the term rewriting system introduced in
Exercise 5.12 cannot be shown with a Knuth-Bendix order or a recur-
sive path order with status.

We have seen that unary function symbols of weight 0 must satisfy a
very strong property to be admissible in Knuth-Bendix orders. Why
is it not problematic to have weight zero for symbols of arity greater
than 1 in the Knuth-Bendix order?

5.5 Bibliographic notes

The undecidability proof presented in Subsection 5.1.1 is due to Huet and
Lankford [121]. This proof shows that the termination problem is even
undecidable for rewrite systems where all rules contain only unary func-
tion symbols. Since the number of rules in Raq depends on the number of
transitions in M, the proof does not yield a bound on the number of ru-
les necessary for obtaining undecidability. Dauchet [64, 65] has shown that
termination is already undecidable for term rewriting systems consisting of
a single rewrite rule. However, in his reduction the arities of the function

132 5 Termination

symbols occurring in this rule depend on the size of the alphabet I', the set
of states), and the set of transitions A of the Turing machine. For term
rewriting systems containing only unary function symbols, termination is
known to be undecidable for systems with three rules [171]. For systems
with one or two rules, the problem is open, but there are partial decidability
results for the case of systems with one rule [250, 228]. The decidability
result of Subsection 5.1.2 can be found in [71]. It is the obvious generaliza-
tion to the right-ground case of Huet and Lankford’s result [121] for ground
rewrite systems.

The main ideas underlying the interpretation method were already pres-
ent in [164], where an interpretation by linear or quadratic polynomials was
proposed. In their general form, polynomial interpretations were introduced
by Lankford [155, 156]. Hofbauer and Lautemann’s result [115] that poly-
nomial orders induce a doubly-exponential bound on the length of reduction
chains is complemented by an article by Cichon and Lescanne [52], where it
is shown that termination proofs with polynomial orders induce polynomial
bounds on the number-theoretic functions computed by the rewrite systems.
This may seem surprising in the light of Example 5.3.12, where the term
q"(52(0)) reduced to the doubly-exponentially larger term s2 (0). However,
the number-theoretic function computed by the rewrite system of the exam-
ple is g, and a term of the form ¢(s™(0)) reduces to s™ (0), whose size is
polynomial in the size of g(s™(0)) (see [52] for details).

Simplification orders were first defined by Dershowitz [70]. In this paper,
Dershowitz presents a proof of Kruskal’s Theorem, shows that simplification
orders are well-founded, and mentions polynomial simplification orders, as
introduced in Subsection 5.4.1. Rather than Kruskal’s original proof [150],
Dershowitz’s proof and ours follow the simplified proof of Kruskal’s Theorem
presented by Nash-Williams [183]. Another good source for Kruskal’s The-
orem and other results on well-partial-orders and well-quasi-orders is [218].
We have actually considered a restricted version of the embedding relation
and Kruskal’s Theorem: instead of requiring in the second clause of the de-
finition of >.,,;, that the two terms have the same root symbol, Kruskal’s
more general definition just requires that the first term has a root symbol
that is larger than or equivalent to the root symbol of the second with respect
to a given well-quasi-order on the signature. Our embedding is a special
case, since the identity is a well-quasi-order on any finite set. By using the
general formulation of Kruskal’s Theorem (for a given well-partial-order or
well-quasi-order on the signature), one can extend the results presented in
this chapter to simplification orders on terms over infinite signatures [181].

5.5 Bibliographic notes 133

The original recursive path order defined by Dershowitz [72] was actually
what we call multiset path order. The lexicographic path order was in-
troduced by Kamin and Lévy [130], but this paper and the proof that the
lexicographic path order is a simplification order were, to the best of our
knowledge, never published. Building on the above mentioned more general
formulation of Kruskal’s Theorem, one can introduce recursive path orders
that are induced by well-quasi-orders on (possibly infinite) signatures [73].
The use of well-quasi-orders instead of simply well-partial-orders increases
the power of the method: Exercise 5.22 gives an example of a system for
which termination cannot be shown using a lexicographic path order induced
by a partial order on the function symbols. However, if we use a quasi-order
for which f and g are equivalent, then both rules can be ordered appropria-
tely by the wqo-variant of the lexicographic path order (see Definition 19 in
[73]).

The Knuth-Bendix order was first introduced in [145] in a slightly more
restricted form: the weights were required to be non-negative integers, the
precedence order on the function symbols was assumed to be total, and the
variable condition in (KBO2) required “|s|; = |t|,” instead of “|s|; > |t|.”.
Knuth and Bendix [145] show termination by a direct proof, which makes use
of the requirement that weights are non-negative integers. Our more general
definition and the proof that Knuth-Bendix orders are simplification orders
are derived from the presentation in [79)].

6

Confluence

This chapter studies the problem of determining whether a TRS is confluent.
After a brief look at the (undecidable) decision problem, the rest of the
chapter divides neatly into two parts:

The first part deals with terminating systems, for which confluence turns
out to be decidable. This is a key result in our search for decidable equational
theories: if F constitutes a terminating TRS, we can decide if it is also
confluent, in which case we know by Theorem 4.1.1 that ~g is decidable.

The second part deals with those systems not covered by the first part,
namely (potentially) nonterminating ones. The emphasis here is not on deci-
ding ~g by rewriting, which requires termination, but on the computational
content of a TRS. Viewing a TRS as a program, confluence simply means
that the program is deterministic. We show that for the class of so-called
orthogonal systems, where no two rules interfere with each other, confluence
holds irrespective of termination. This result has immediate consequences
for the theory and design of functional programming languages.

6.1 The decision problem
Just as for termination and most other interesting properties (of term rewrit-
ing systems or otherwise), confluence is in general undecidable:
Theorem 6.1.1 The following problem is undecidable:
Instance: A finite TRS R.
Question: Is R confluent?

Proof Given a set of identities E such that Var(l) = Var(r) foralll =~ r € E,
we can reduce the ground word problem for E to the confluence problem of a
related TRS as follows. Let R := EUE™!, i.e. orient every equation in both
directions. Thus we have —r = < g and therefore R is confluent. Because

134

6.2 Critical pairs 135

Var(l) = Var(r), R is even a TRS. Given two ground terms s and ¢ and some
new constant a, we show below that Rs := RU {a — s,a — t} is confluent
iff s g t. Thus we have reduced the ground word problem for E to the
confluence problem for R,;. Since there are finite E' with undecidable ground
word problem and Var(l) = Var(r) for all [= r € E, e.g. Example 4.1.4,
confluence cannot be decidable either.

It remains to be shown that Rg; is confluent iff s =g t.

(=) If Ry is confluent, we must have s |g,, t, but because neither s nor
t contains the new constant a, this implies s |g ¢t because the rules a — s
and a — t cannot have been used. Now s ~g t follows from — g = < g.

(<) Confluence of Ry follows because R is almost symmetric. More
precisely, below we show for arbitrary terms v and v that if v —g,, v then
vt 5g ut, where ut is the result of replacing all occurrences of a in v by t.
Thus, if u Sg,, ui, i = 1,2, then u; —g,, ut g u* and hence u; |g,, uo.

Suppose u —pg,, v. We distinguish which rule is used in this step. If
u —g v, we can safely replace a by t to get u! —g v and thus v* —g u?
because R is symmetric. If a — s is used, then u|, = a and v = u[s], for
some position p. From s ~g t it follows that s < g t and hence s g t. Thus
we have v =g u[t], and therefore also v S g (u[t]y)t = ut[tt], = ut[t], = u'.

Finally, if a — ¢ is used at position p, then v¢ = (ult],)! = ut g u. O

Exercises

6.1 Show that confluence is not even decidable if all function symbols are
unary. (Hint: the above proof almost works, but a is not unary.)

6.2 A TRS over a signature X is called ground confluent iff it is conflu-
ent for all ground terms: Vs, t1,t3 € T(X). s L thAs Sty = t | to
Show that every ground TRS is confluent iff it is ground confluent.

6.2 Critical pairs

In this section we show that local confluence is decidable for finite term
rewriting systems. Using Newman’s Lemma, which says that a terminating
reduction is confluent iff it is locally confluent, we obtain as a corollary that
confluence is decidable for terminating finite term rewriting systems.

We can view the study of confluence as a study of nondeterminism. Term
rewriting is inherently nondeterministic because a term may contain more
than one redex. Nevertheless, the result of normalizing a term w.r.t. a
TRS may still be uniquely determined, provided the multiple redexes do
not interfere with each other, i.e. if the contraction of one redex does not

136 6 Confluence

destroy the others. For example, given R = {f(z) — f'(z), g(z) — ¢'(z)},
the term f(g(z)) has a unique normal form, although there are two paths
by which it can be reached. In fact, R is confluent. On the other hand,

R = {f(g9(z)) — r1, g(h(z)) — ro} gives rise to interference: f(g(h(z)))
rewrites to both {x +— h(z)}(r1) and f(r2), and it depends very much on
the exact form of r; and ry whether this fork can be joined again.

Let us now look at the general situation when trying to obtain local con-

fluence:
S
l1 - T‘i/ \\lf — T2
t1 to

There are rules I; — r; € R, positions p; € Pos(s) and substitutions o;, such
that s|p, = o3l; and t; = s[oiri]p,;, ¢ = 1,2. Now we distinguish several cases,
depending on the position of p; and ps relative to each other.

Case 1. p; and ps are in separate subtrees, i.e. p1||p2. In this case Fig. 6.1
shows that local confluence always holds.

o1l oaly

/ \<’2

12
0’212 0‘1l1
lz—x /'n

aa

Fig. 6.1. Case 1: no overlap.

6.2 Critical pairs 137

Case 2. p; is a prefix of ps, i.e. po = p1p for some p which could be
empty. (The case p; = pop is dual.) Then s has the following form:

K] n
............................ p2
o1y p
o2ls

We can now restrict our attention to the subterm s|,, = o1l; because

o1ly

o171 (o1h1)[o2r2]p
* %

t

implies t1 = s[o171]p, — sltlp, < sl(o1l1)[o2r2lplpy = s[o2ralp, = t2 by
compatibility of — with the context s[.]p, .

Now we must distinguish how far apart the two redexes are.

Case 2.1. The redex o3ly does not overlap with [y itself but is contained
in o1, i.e. p = q1g2 such that ¢; is a variable position of [;. Then o1l; has
the following form:

We call this a non-critical overlap of two redexes. Local confluence holds
in this situation as well, but the analysis is complicated by the fact that
x := l1|q, can occur repeatedly in both /; and r1. Fig. 6.2 shows how local
confluence is achieved in a prototypical situation where x occurs three times
in [; and twice in r1. In general, the rule [y — 72 needs to be applied n
times to t; and m — 1 times to t2, where x occurs m times in /; and n times
in rq.

138 6 Confluence

I
(] z x
o2l2 o2l2 o2l2
ll —7T1 lg —Tr2

I

z z z

@ oaly oala A o2la
12—>7‘2 (2) l2—>7‘2 (3—1)
li—ry

b

T x z

Fig. 6.2. Case 2.1: non-critical overlap.

Case 2.2. The two left-hand sides [; and I3 overlap, i.e. p € Pos(l1), li|p
is not a variable, and o1(l1|p) = o2l2. Then o1l; has the following form:

6.2 Critical pairs 139

This is called a critical overlap of two redexes. We will now show that
this situation is an instance of a so-called critical pair. Informally, a critical
pair is the result of unifying the lhs of one rule with a non-variable subterm
of the lhs of another (or possibly the same) rule, and reducing the resulting
term using both rules.

We interrupt our analysis of Case 2.2 for the formal definition of critical
pairs.

Definition 6.2.1 Let I; — r;, i = 1,2, be two rules whose variables have
been renamed such that Var(ly,r1) N Var(lg,m2) = 0. Let p € Pos(l1) be
such that l1], is not a variable and let § be an mgu of l|, =’ lp. This
determines a critical pair (071, (611)[0r2]p):

01,

07‘1 (0l1)[67‘2]p

If two rules give rise to a critical pair, we say that they overlap.

The critical pairs of a TRS R are the critical pairs between any two of
its (renamed) rules and are denoted by CP(R). This includes overlaps of a
rule with a renamed variant of itself, except at the root, i.e. if p = €. In the
latter case the overlap is of the form r +— [— r and can be ignored safely.

Note that by definition u; ~pg ug for any critical pair (u1,us) of R: critical
pairs of R are equational consequences of R.

Example 6.2.2 Consider the rules

1) f(f(z,y),2) — f(=, f(y,2)),

(2) f(’l:(xl),xl) - €,
which give rise to a critical pair by unifying the non-variable subterm f(z,y)
of the lhs of rule (1) and the lhs f(i(z1),z1) of rule (2). An mgu is {z —
i(x1),y — z1} and the corresponding fork is

f(f(i(l'l),l’l), z)

f('l(.’L‘]_), f(.’L']_,Z)) f(ea 2)

Let us now return to our analysis of Case 2.2 and our claim that it is an
instance of a critical pair. To simplify technicalities, we assume that the
two rules have been renamed such that they use disjoint sets of variables,
i.e. Var(ly,m1) N Var(la,m2) = 0. This does not change the induced rewrite
relation, but it means that we can assume Dom(o1) and Dom(oz) are dis-
joint and hence that o := o1 U 02 is well-defined. But now we find that

140 6 Confluence

o(l1lp) = o1(l1]p) = o2lp = oly, i.e. o is a unifier of /1|, and l3. Thus o is
an instance of every mgu 6 of l1|, and I3, which in turn means that the pair
(o171, (01l1)[o2r2]p) = (071, (0l1)[0oT2]p) is an instance of the critical pair
(0r1, (011)[0ra]p). The case p =€ and p(ly — r1) = (lo — r2) for some rena-
ming p does not count as a critical pair but it means that o;2 = o2px holds
for all z € Var(l1) 2 Var(r1) and hence t; = o171 = 02pr1 = 0972 = t2.

This concludes Case 2.2. Calling p; p (because Case 2 is symmetric in
p1 and p2, and we only picked out the case p; < p2) we can summarize our
analysis as follows:

Lemma 6.2.3 If s g t;, i = 1,2, then t1 [t2 or t; = s[uilp, i = 1,2,
where (u1,u2) or (ug,u1) is an instance of a critical pair of R.

This is called the Critical Pair Lemma and brings us to the Critical
Pair Theorem:

Theorem 6.2.4 A TRS is locally confluent iff all its critical pairs are join-
able.

Proof The <«=-direction follows directly from the Critical Pair Lemma: given
ti = s[uilp, 1 = 1,2, where (w.lo.g.) (u1,u2) is an instance of some critical
pair (v, v9), i.e. u; = v;, then v; % ¢ for some term t implies u; — 6t and
hence also t; — s[6t]p, i = 1,2. The =-direction is a consequence of the
fact that every critical pair is the product of a fork 6r; «— 61y — (011)[072]p.
Hence joinability follows from local confluence. |

Using Newman’s Lemma we immediately obtain

Corollary 6.2.5 A terminating TRS is confluent iff all its critical pairs are
joinable.

Because a finite TRS has only finitely many critical pairs, this yields
Corollary 6.2.6 Confluence of a finite and terminating TRS R is decidable.

Proof For every pair of rules I — 71 and Iy — 7o (there are |R|? of them)
and for every p € Pos(l1) such that l1|, is not a variable (there are at
most |/1] of them) try to generate a critical pair by unifying variable-disjoint
variants of l1|, and ly. For each of these finitely many critical pairs (u1, ug)
reduce u; to some R-normal form ;, ¢ = 1,2. We claim that R is confluent
iff 443 = 4o for all critical pairs. If always 13 = 1 then all critical pairs are
joinable and hence R is confluent by Corollary 6.2.5. On the other hand, if
there is some critical pair with @) # g then the definition of a critical pair
implies the following non-confluent situation: i Eoup — u— ug S .

O

6.2 Critical pairs 141

Example 6.2.7 Consider the one-rule TRS R := {f(f(z)) — g(x)} which
has exactly one critical pair as a result of overlapping the rule with a renamed
variant f(f(y)) — g(y) of itself. The lhs f(f(x)) unifies with the subterm
f(y) of the renamed lhs producing the mgu {y — f(z)}. Thus we obtain
the critical pair

F(f(f(=)))

9(f (@) f(9())

Clearly R is not confluent because the critical pair is already in normal form
and hence not joinable.

This example demonstrates the necessity for two conditions in the definition
of the critical pairs of a TRS:

e Rules need to be renamed. In the example, f(f(z)) and f(z) are not
unifiable and would not give rise to a critical pair.

e The critical pairs between a rule and (a renamed copy of) itself need to
be taken into account. Otherwise all one-rule systems would appear to be
locally confluent, which is clearly not the case.

The example also demonstrates that critical pairs can be helpful lemmas:
9(f(z)) =~r f(g(z)) is an interesting consequence of f(f(z)) —r g(z)
which may not be apparent at first sight. Even more, we can turn R into
a convergent system R’ by adding the rule f(g(z)) — ¢(f(z)). Termi-
nation of R’ can be shown with the lexicographic path order induced by
f > g. Confluence follows because R’ has only one additional critical pair
9(g(z)) —r F(f(9(x))) —r f(g(f(z))) which is easily seen to be joinable:
F9(F@) = 9(F(F(@)) ~r 9(9(a)).

Because critical pairs are equational consequences, adding a critical pair as
a new rewrite rule does not change the induced equality, i.e. g = ~gs. This
idea of adding critical pairs as new rewrite rules is known as “completion”
and is the subject of Chapter 7.

Exercises

6.3 Find m and rg such that {f(g(z)) — r1, g(h(z)) — r2} is confluent.

6.4 Is R:= {f(9(f(x))) — g(z)} confluent? Find a convergent R’ such
that ~p = ~p.

6.5 Compute all critical pairs for each of the following systems:

@) flg(f(z) — =z, [flg(=)) — 9(f(2));

142

6.6

6.7

6.8

6.9

6.10

6 Confluence

(b) 0+y — gy, s@)+y — s(z+y),
z+0 — =z, z+s(y) — s(z+y);
() flz,z) — a flz,9(z) — b
d) f(f(z9),2) — f(=,f(y,2), [flz,1) — =
() f(f(z,y),2) — [flz,f(y,2), [f(Lx) —
(f) f(z, f(y,2)) — f(f(=z,y),f(z,2)),
f(f(=z,y),2) — f(f(=,2),f(y,2)),
f(f(=z,),f(y,2) — .
Which systems are locally confluent? Which ones are convergent?
Show that the following system is convergent:

f(fz) — f(@), flg()) — g(=),
g(g(x)) — f(=), g9(f(=) — g(=).

Can you determine the normal form of a term as a function of the
numbers of fs and gs in it?

Call R left-reduced if for all (I — r) € R, [is in normal form w.r.t.
R—{l—r}.

(a) Show that every left-reduced and terminating ground TRS is con-
fluent.

(b) Let G be a finite set of ground identities over ¥ and let > be a
reduction order which is total on ground terms over ¥. Describe
an algorithm which turns F into a finite left-reduced TRS R such
that ~*gp =~ and R C >.

(c) Conclude from the above that the word problem is decidable for
a finite set of ground identities.

Our proof of local confluence in Case 2.1 relies entirely on pictures. For
an algebraic proof define the substitution o] by ojz := (01z)[0272]g,
and o}y := o1y for all y # z. Using the lemma below (which you
should also prove) show formally that o171 — ofr1 < (a1l1)[02ls]q, -
Lemma Let x be some fized variable and let o and o’ be substitutions
such that ox — o'z and oy = o'y for all y # z. If {01,...,0,} is
the set of positions in some term t such that t|,, = z, then t; = o't
where to := ot and t;y1 := t;[o’z],,.

What is the difficulty if you try to put a complexity bound in terms of
the size of R on the running time of the decision procedure outlined
in the proof of Corollary 6.2.67

Consider the system {f(z) — g(z,y)}. Does it have any critical pairs?
Is the induced rewrite relation confluent? What is going wrong here?

6.2 Critical pairs 143

Critical pairs in ML

We start with the mundane issue of renaming terms. Because the datatype
term (see Section 4.7) provides indexed variables (type vname), renaming
can be reduced to incrementing indices:

(* rename: int -> term -> term *)

fun rename n (V(z,4)) = V(z,itn)

| rename n (T(f,ts)) = T(f, map (rename n) ts);

Renaming a term t away from a term u is now simply a matter of incremen-
ting t’s indices beyond those of u. Thus we need to compute the maximum
index in a term. To simplify matters we make the reasonable assumption
that all variables have non-negative indices. This justifies the base case of
maxs, which computes the maximum of a list of natural numbers:

fun maxz(z,j:int) = if ¢ > j then i else j;

(* mazs: int list -> int *)

fun mazs (i::18) = mazx(i, mazs is)
| mazs [1 0;

[

(* mazindexr: term -> int *)
fun mazindex (V(z,7)))
| mazindex (T(_,ts)) mazs(map mazindex ts);

o

Now we can turn to the actual computation of critical pairs shown in
Fig. 6.3. Remember that term rewriting systems are implemented as lists of
term pairs. The main functions are easily characterized:

CriticalPairs R computes a list of all critical pairs of R (including the trivial
ones obtained by overlapping a rule with itself at the root).

CriticalPairs2 R1 Ry computes a list of all critical pairs formed by unifying
a lhs of Ry with a subterm of a lhs of R».

CPs R (l,r) computes a list of all critical pairs formed by unifying a lhs of
R with a subterm of /.

The core of the computation takes place in CPs R (l,r). It traverses
! (by means of cps and innercps) and tries to unify (in CP) each subterm
with all left-hand sides of R. In order to keep track of the context while
descending into [, the context is implemented as a function which performs
subterm replacement: the context at position p of [is a function C of type
term -> term such that C(s) = [[s], for all terms s. If in addition ¢ = {|,
then we can specify the functions CP, cps and innercps as follows:

CP C (t,m (la,7m2) computes individual critical pairs. It returns the single-
ton list [(or,o(I[ra]p))] if o is an mgu of I|, = I, and returns []
if |, =7 I has no solution. Note that (o7, o (I[re],)) is the desired
critical pair because o (I[rg]p) = (o) [or2]p.

144 6 Confluence

(x CP: (term -> term) -> term * term -> term * term -> (term * term) list *)

fun CP C (t,7) (12,72) = let val sigma = lift(unify(t,12))
in [(sigma 7, sigma(C r2))] end
handle UNIFY => [];

(x CPs: (term * term) list -=> term * term -> (term * term) list *)
fun CPs R (I,7) =

let fun cps C (V _, 1) =[]
| eps C (T(f,ts),r) =
concat(map (CP C (T(f,ts),7)) R) @ (innercps C (f,[1,ts,7))
and innercps _ (_, _, [1, J) =[]
| innercps C (f, ts0, t::tsl, r) =
let fun Cf s = C(T(f, tsO @ [s] @ ts1))
in (cps Cf (t,7)) @ (innercps C (f, tsO @ [t], tsl, 7)) end
val m = mazs(map (fn (I,7) => maz(mazindez |, mazindex 7)) R) + 1
in cps (fn t => t) (rename m l, rename m r) end;

fun CriticalPairs2 R1 R2 = concat(map (CPs R1) R2);

fun CriticalPairs R = CriticalPairs2 R R;

Fig. 6.3. Computing Critical Pairs in ML.

cps C (t,r) returns a list of all critical pairs formed by unifying a lhs of R
with some non-variable subterm of I|,.

cps C (f, [t1,...,ti—11, [ti, ... tx], 7, where I, = f(t1,...,ts), returns a
list of all critical pairs formed by unifying a lhs of R with some
non-variable subterm of [|p;.

Looking at the initial call of cps, it is easy to verify that C(s) = I[s], and
t = lp trivially hold because C is the identity, i.e. the empty context, and
thus p = e.

Of course CPs renames (l,r) first by incrementing its indices by m, the
maximum index in R plus 1. Thus the indices in the renamed rule and R

are disjoint.

Exercise

6.11 The functional implementation of contexts comes with certain per-

formance penalties which can be avoided by the representation
type context = (string * term list * term list) list;

(* replace: context -> term -> term *)
fun replace [1 t =t
| replace ((f,ts,us)::Cs) t = replace Cs (T(f, ts @ [t] @ us));

Convert the computation of critical pairs to use context and replace.

6.8 Orthogonality 145
6.3 Orthogonality

How do we determine confluence of nonterminating systems? Because con-
fluence is undecidable in general but decidable for terminating systems, it
cannot be decidable for nonterminating ones as well. Hence all we can hope
for are sufficient conditions which cover large classes of nonterminating sys-
tems. These classes will be defined by restrictions both on the rules and on
the way in which critical pairs must be joinable.

Definition 6.3.1 A rewrite rule | — 7 is called left-linear (resp. right-
linear) if no variable occurs twice in [(resp. r); it is called linear if it is
both left- and right-linear. A TRS is called left-linear (resp. right-linear,
resp. linear) if all of its rules are left-linear (resp. right-linear, resp. linear).

Since our analysis of forks in the proof of the Critical Pair Lemma is inde-
pendent of termination, we can reuse it in the current section, which does
not assume termination. Hence we keep on referring to the cases 1, 2.1 and
2.2 distinguished there. Linearity restrictions will help to simplify case 2.1.

Linearity by itself is not enough to guarantee confluence. Hence we also
need to restrict the kinds of critical pairs that may arise. We start with a
simple restriction related to strong confluence.

Definition 6.3.2 Two terms s1 and s are called strongly joinable (w.r.t.
—) if there are terms t; and t such that s; = t; < s and s; — tp — s3.

This brings us to the Strong Confluence Lemma:

Lemma 6.3.3 If R is linear and every critical pair of R is strongly joinable,
then R is strongly confluent.

Proof Let us follow the redex analysis in the proof of the Critical Pair
Lemma.

Case 1 is unchanged and we obtain not just strong confluence but even
the diamond property.

Case 2.1 is simplified by the linearity restriction. The diagram, which is
an instance of strong confluence, is shown in Fig. 6.4. Note that I; — r;
erases = (and the subterm below it) if ¢ Var(r1), which explains the lower
left =.

Case 2.2, the instance of a critical pair, is strongly joinable because all
critical pairs are strongly joinable, which their instances inherit. a

Since any strongly confluent relation is confluent (Lemma 2.7.4) we have in
fact proved that if R is linear and every critical pair of R is strongly joinable,
then R is confluent.

146 6 Confluence

N

I —)1;/ lo—rg

N
lg—>T2

li—r

Fig. 6.4. Case 2.1 for linear term rewriting systems.

Example 6.3.4 The following TRS is linear and nonterminating
s(z)+y — s(z+y),
z+s(y) — s@+y),
z+y — y+uz,

and its three critical pairs (of which we show two) are strongly joinable:

s(s(z) +v) s(z +y)
/ ! / 1
s(z)+s(y) s(s(z+y)) s()+y s(y+x)
N 7 N 7
s(z +s(y)) y +s(z)

Unfortunately, the applicability of the Strong Confluence Lemma is limited
by its requirement of right-linearity. As we indicated in the introduction
to this chapter, (potentially) nonterminating TRS are functional programs,
but right-linear functional programs are so cumbersome as to be practically
useless. Neither can we simply drop right-linearity, as the following example
shows:

6.8 Orthogonality 147

Example 6.3.5 (J.J. Lévy) All critical pairs of the following left-linear TRS
are strongly joinable:

fla,a) — g(b,b), g(b,b) — f(a,a),
a — d, — U,
fld,z) — f(z,z), g ,z) — g(z),
f(z,d) — f(z,x), g(z,b)) — g(z,)

but it is not confluent:

(a,a) g(b,b’)\
)\ Swa==gt) Py
f(@, a>/ 9(t),b)

Left-linearity is equally essential, as Example 6.3.12 below demonstrates.

However, we can trade right-linearity for a further restriction on the crit-
ical pairs. We first show that left-linearity suffices, if there are no critical
pairs, and later strengthen this result by allowing critical pairs to be joined
in a special way. Although the latter result is more general, the proof of the
weaker version exhibits the underlying principles more clearly.

//
//\\

Definition 6.3.6 A TRS is called orthogonal if it is left-linear and has
no critical pairs.

A naive confluence proof for orthogonal systems runs into the following
problem: the lack of right-linearity means that joining the fork in Case 2.1
may need more than one application of Il — 72, and hence all we can deduce
is local confluence. The key idea now is to use a different rewrite relation
which not only is confluent but even has the diamond property. The latter is
advantageous because we only need to analyse one-step forks and yet obtain
confluence instead of just local confluence.

Looking at Case 2.1 we see that the remaining obstacle on the road to
the diamond property is the repeated reduction ls — 79 in parallel subtrees.
Linearity is a rather drastic restriction and only achieves strong confluence.
A more ingenious idea is to consider parallel reduction of redexes in separate
subtrees as suggested by the following picture:

AL AAA

148 6 Confluence

Definition 6.3.7 We say that a set of positions is parallel if p||q or p = ¢
forall p,qg € P. Let P = {p1,...,pn} C Pos(s) be a set of parallel positions.
Given a term t, for each p € P, we define the notation
sltplpep = Sltpilp: - - - [tpulpn-

Because the p; are parallel to each other, their order is irrelevant.

If for each p € P we are given a rule [, — r, € R and a substitution o, such
that s|, = oplp, we write s 3£ sloprplpcp and call it a parallel reduction
step. The decorations P and R can be dropped if they are obvious from the
context or irrelevant.

Observe that P can be empty, in which case s 3 s, i.e. =3 is reflexive.

An immediate consequence of this definition is
Fact 6.3.8 - C =3 C 5.
The proof of the following easy lemma is left as an exercise:

Lemma 6.3.9 If R has no critical pairs then s —% t1 and s —% to imply
t1 = tq.

And now, the main theorem about orthogonal systems:
Theorem 6.3.10 If R is orthogonal then =g has the diamond property.

In the sequel, we frequently use a little coding trick: the mapping i — 1 —i
swaps0and 1: 1—-0=1and 1—-1=0.

Proof Assume s =P t;, i = 0,1. We partition P; into A; U B; U C where

A; = {peP|PqgePi_; q<p}
B; := {peP|3q€ P q<p},
C = FBnNn~h.

Thus A; contains those positions contracted in s = t; that are not below
some position contracted in s = t;_;, B; contains those positions contracted
in s =2 t; that are strictly below some position contracted in s = t;_;, and C
is the set of positions contracted in both steps. Fig. 6.5 traces the reduction
of the different positions by looking at one example from each set.

The elements of C' are unproblematic: from Lemma 6.3.9 it follows that
tOlc = tllc for all c € C.

Because there are no critical pairs, each b; € B; lies inside a subterm
corresponding to a variable of the lhs of the reduction rule applied at a;_;.
The reduction s = ¢;_; merely copies the subterm s|p,. This copying is the
reason why we need parallel reductions to achieve the diamond property.

6.8 Orthogonality 149

$ {ao,bo,c}
fr—

u {a1,b1,c} u {a1,b7,b7}

t
! {a0.b.b5}
e —

ao

by b

A

Fig. 6.5. The diamond property of orthogonal reductions.

The reduction t;—; = u uses the same rules at copies of positions in B;
(called b, and b} in the figure) that are used at the original positions in B;
in the reduction s = t;.

A redex at position a; € A; cannot be destroyed by a reduction at some
bi—; € Bj—; because they do not overlap critically and because R is left-
linear: otherwise the applicability of a rule with lhs f(z,) could be lost by
a reduction in one of the arguments of f. Therefore the reduction ¢;—; = u
uses the same rules at positions in A; as the reduction s = ;. O

The above pictorial argument is designed to convey the essential intuition.
For a formal proof, see Section 6.4 below.

Because =3 is in between — and -, and because the diamond property
implies strong confluence, we can now use Corollary 2.7.7 to establish

Corollary 6.3.11 Every orthogonal TRS is confluent.

Note that left-linearity is essential:

150 6 Confluence

Example 6.3.12 The rules f(z,z) — a, f(z,9(x)) — b and ¢ — g(c) do
not overlap (f(z,z) and f(z/, g(z')) do not unify!), yet the term f(c,c) has
two distinct normal forms a and b. (Compare the right-hand diagram in
Fig. 2.6.)

Orthogonal systems and functional programming

The main application of the confluence of orthogonal systems is to the theory
of functional programming languages. Roughly speaking, we may view a
functional program as an orthogonal TRS (but see below). Hence it follows
that functional programs are deterministic, i.e. the result of every terminat-
ing computation is uniquely defined.

In order to understand why functional programs are orthogonal, we need
to consider their syntax in more detail. In the simplest case, a functional
program is a collection of recursion equations of the form f;(z1,...,zx,) = t;,
1=1,...,n, such that

e Var(t;) C {z1,...,ok,}, i.e. the equations form a TRS,
o all z1,...,xk, are distinct, i.e. the TRS is left-linear, and
e all f; are distinct, i.e. there are no overlaps.

This is the syntax of languages like LISP. More recent languages like ML
are more liberal and allow complex patterns on the lhs as well, with certain
restrictions.

Definition 6.3.13 A TRS over a signature X is a constructor TRS if ¥
can be partitioned into two sets of constructors X, and defined functions
¥4 such that the lhs of every rule has the form f(s;) with f € ¥, and
81,.-.,8n € T(X., V).

For example, {f(0) — 79, f(s(z)) — r1} is a constructor TRS, whereas
f(f(z)) — r cannot be part of any constructor TRS.

Now we can describe an ML-like functional program as a left-linear con-
structor TRS where the (renamed) left-hand sides of two distinct rules do
not unify. In a constructor TRS, the last requirement amounts to saying that
no two rules overlap. Thus an ML-like functional program is an orthogonal
constructor TRS.

The constructor aspect has nothing to do with confluence. It simply means
that critical pairs can only arise as root overlaps. Orthogonality, however,
is almost forced upon us if the language is to be deterministic. Hence one
has to be very careful if one tampers with orthogonality: even dropping
left-linearity is not advisable (see Example 6.3.12 above).

6.4 Beyond orthogonality 151

Unfortunately, functional programming and term rewriting are further
apart than we pretended above. There are many differences, both minor (e.g.
in a functional program, clauses may overlap because the order of clauses
ensures that only one of them matches a given term) and major (functional
programs allow higher-order functions and partial application), which can
be resolved only at the expense of complicating matters considerably. A
rigorous treatment of functional programs is beyond the scope of this book
but our techniques, if not our results, carry over to that area.

Exercises

6.12 Can you use the Strong Confluence Lemma as the basis of a decision
procedure for confluence of linear term rewriting systems?
6.13 Is the following TRS confluent?

h(f(z,y)) — f(h(r(x)),y),
f(z,k(y,2)) — g(p(y),q(z, 1)),

h(g(z,y)) — q(z,h(r(y))),
q(z,h(r(y))) — hig(z,y)),

hg(z,y)) — g(z,h(y)).

6.14 Show that the rewrite rules of combinatory logic (Example 4.1.3) are
confluent.

6.15 Prove Lemma 6.3.9.

6.16 Is {f(z,z) — a, c — g(c), g(z) — f(z,9(z))} a confluent TRS?

6.4 Beyond orthogonality

Although orthogonality captures the current state of functional program-
ming languages, there is scope for extensions. The prototypical example is
“parallel or”:

or(true,z) — true,

or(z,true) — true.

Most functional languages let you write the above two rules. What they
implement, however, is the following orthogonal specialization:
or(true,z) — true,
or(false, true) — true.
Consequently, the term or(u, true), where u has no normal form, rewrites to

true in the first system but has no normal form in the second one. (Of course
the above rules are assumed to be part of a larger TRS/program which need

152 6 Confluence

not terminate as a whole. Therefore a critical pair analysis can only yield
local confluence.) The reason for this transformation is performance: the
first TRS requires quasi-parallel evaluation of the arguments of or, whereas
the second one allows sequential evaluation. Going beyond orthogonality
increases expressiveness but does not come for free.

This section can be seen either as an attempt to relax the orthogonality
requirement imposed by functional programming languages without sacri-
ficing their determinacy, or as a purely abstract study of confluence for
nonterminating rewrite systems. It requires some subtle arguments which
go beyond pictures. Hence we first develop the basis for formal proofs.

The following three propositions are obvious enough that we can leave it
to the reader to draw the pictures corresponding to their proofs:

Lemma 6.4.1 Let P C Pos(s) be a set of parallel positions. If s, = t, for
all p € P, then s[splpcp =3 s[tplpep-

Lemma 6.4.2 If ox = o'z for all x € Var(s), then 0s = o’s.
Lemma 6.4.3 If s 3 t and Vp € P Ja € A. a < p, then t = s[t|g]aca.

At the heart of many proofs about orthogonal systems we have the so-called
Parallel Moves Lemma:

Lemma 6.4.4 Let R be a TRS and l — r € R a left-linear rule. If ol :;ﬁ t
and all elements of P are below some variable position of I, then there exists
a substitution o’ such that or =3 g o'r g t.

Proof For every x € Var(l) there is a unique (because [is linear) g, € Pos(l)
such that [|g, = z. Let P, be the redex positions below ¢,: P, := {p €
Pos(ox) | gzp € P}. Thus, for each p € P, there are arule I, — r, € R
and a substitution o, such that (oz)|, = opl,. Now define the substitution
o' by o'z := (0x)[oprplpep, for every x € Var(l). By definition we have
ox = o’z. Therefore Lemma 6.4.2 yields or =3 o'r. It is easy to see that
because [is linear, t can be written as ¢’l. Thus it also follows that t — o'7.
The whole construction is shown in Fig. 6.6. O

We can now give a formal proof that for orthogonal systems = has the
diamond property (Theorem 6.3.10 above). Suppose s =P t;, i = 0,1,
define A; and C as in the proof of Theorem 6.3.10, and let A := AgUA;. By
Lemma 6.4.3 we can write t; as s[t;|p]pcauc. Hence it suffices to construct,
for each p € AUC, a term u, such that ¢;|, =3 u, because Lemma 6.4.1
then implies ¢; =3 s[up|pcauc- If p € C, Lemma 6.3.9 implies ¢g|, = t1], and
hence we set uy, := t;|,. If p € A, we assume w.l.o.g. p € P;. Hence there are
arule [— r and a substitution o such that s|, = ol and t;|, = or. Define

6.4 Beyond orthogonality 153

ar o'r

MG /AVA

Fig. 6.6. Parallel Moves Lemma.

B, := {q | pg € Ry}. Hence s|, =3B» to|,. Because there are no critical
pairs, each ¢ € By, must be below some variable position of . Therefore the
Parallel Moves Lemma implies that there exists a substitution ¢’ such that
t1|p =3 o'r « to|, and we set u, := o’r.

However, we can do better:

Definition 6.4.5 A TRS is called parallel closed if us = u; for all critical
pairs (uj, ug).

Note the asymmetry in this definition: critical pairs are ordered. The proof
below that left-linear parallel closed systems are confluent relies on the fixed
direction ug =3 uy. It is greatly facilitated by the following notation.

Definition 6.4.6 Let P and @ be sets of positions and < some relation on
positions. Then we define PSP :={pc P|3g€Q.pSs ¢}.

The complexity of a fork s =%+ ¢;, i = 0,1, can be measured by the
amount of overlap between the redexes in Py and P;:

m(s, Po, P) = 3 |Gsl)l+ X I(shb)l-

bepZ bepZFo

Lemma 6.4.7 m(s,Po, P1) < > |(slp)l-
pER

154 6 Confluence

Proof Because both Py and P; are sets of parallel positions we have

Do GkI= Y2 D0 Gk Do Gl

bepZTo aePEF1 bepzled acpPs

Furthermore, because P; is a set of parallel positions, POS ! and P>P 1
disjoint subsets of Py. This proves the claim:

m(s,Po, P) < Y |(sls)| + Z I < D0 Gyl 0

bepy 1 acpPsh1 PER
Now we can prove the Parallel Closure Theorem:

Theorem 6.4.8 If R is left-linear and parallel closed, then = has the
diamond property.

Proof Suppose s = ¢;, i = 0,1, and define the sets
A; = {pGPiHH(IEPl_i.q<p}, A = AgUA;.

A is the set of redex positions not strictly below some other redex position.

By induction on m(s, Py, P;) we now construct u such that ¢; = w.

By Lemma 6.4.3 we can write t; as s[t; |p]pe 4. Hence it suffices to construct,
for each p € A, a term wu, such that ¢;|, = u, because Lemma 6.4.1 then
implies ¢; =3 s[up|peca =: u as claimed above.

Suppose p € A. Assume w.l.o.g. p € P;. Thus there are arulel —r € R
and a substitution o such that s|, = ol and t1|, = or. Define B, := {q |
pq € Py}, the set of redex positions below p. We distinguish two cases.

Case 1. There is no critical overlap, i.e. all elements of B, are below
variable positions of I. Therefore the Parallel Moves Lemma implies there
exists a substitution ¢’ such that ¢|, =3 o’r « to|, and we set u, := o'r.

Case 2. There is a critical overlap, i.e. some qg € By, arule lp — 9 € R,
and a substitution og such that

L] slpqo = 0’0l0 and tOlpqo = ooTo,

® go € Pos(l) and l|4, is not a variable,

e there exist a critical pair (uj,us) (between ! — r and lp — 7p) and a
substitution 6 such that ¢1|, = du; and ¢ := (s|p)[o070]g, = Sus2.

This situation is illustrated in Fig. 6.7. Because R is parallel closed, there
is a set of positions Q; such that ug =9 u;. Because =3 is closed under
substitution this implies t =91 #;,. On the other hand we can also contract
the remaining redex positions Qo := B, — {qo}: t = to|,. Thus we have
created a new fork t =% t;|,. Lemma 6.4.7 tells us something about its

6.4 Beyond orthogonality 155

90 " —_>Qo tOlp
P.C
Ind o
Al
»
til, @ e < Up

Fig. 6.7. Case 2.

complexity: m(t,Qo, @1) < Yyeq, I(tlg)] =: n. Because t|; = s|p, for all
q € Qo, and because pq € POZP ! for all ¢ € By, we conclude that

n= Z |(8lpg)| < Z |(8lpg)| < Z |(slp)| < m(s, Po, P1).

9€Qo 9€Bp bepy 1

Because m(t, Qo, Q1) < m(s, Py, P1) we can use the induction hypothesis
that there exists a term u such that ¢; lp = u. Now simply set up :=u. O

As in the case of orthogonal systems we can derive
Corollary 6.4.9 Every left-linear parallel closed TRS is confluent.

Example 6.4.10 Consider the following unusual reduction rules for pro-
positional logic:

or(z, false) — or(z,z),

or(false,y) — or(y,y).

This system is left-linear and parallel closed because there is only one, trivial,
critical pair (or(false, false), or(false, false)).

The example deserves a few remarks:

e Although the system is strongly joinable, it is not right-linear. Therefore
we cannot apply the Strong Confluence Lemma.

e Left-linear systems where all critical pairs are trivial, i.e. of the form (u, u),
are often called weakly orthogonal. Because weakly orthogonal systems
are trivially parallel closed, it follows that they are confluent.

e Overlapping two rules at the root produces two symmetric critical pairs
(u1,u2) and (ug,u1). Parallel closure requires both ug = u; and u; =3 ug.
Exercise 6.19 shows that this can be relaxed slightly.

156

6 Confluence

The reader may wonder if parallel closure really needs to be asymmetric.
One might conjecture that it is sufficient if for each critical pair (u;,us2)
there is a ¢ such that u; =3 ¢, i = 1,2. However, this is an open question.

6.17

6.18

6.19

6.20

6.21
6.22

Exercises

Show that {or(true, true) — true, or(z,y) — or(y,z)} is confluent.
Is the Parallel Closure Theorem applicable?
Is the following TRS confluent?

fl9(z,a,0)) — =z, p(@) — ¢
9(f(h(e,d)),z,y) — h(p(2),q(z)), q(b) — d

The Parallel Closure Theorem can be generalized slightly by distin-
guishing root critical pairs, i.e. critical pairs of the form or) < ol; =
olag — org, from the remaining critical pairs.

(a) Prove the following theorem:
If R is left-linear, all root critical pairs are strongly joinable w.r.t.
=R, and ug 3R u1 for all other critical pairs (ui,u2) of R, then
3R is strongly confluent.
(Hint: modify the proof of the Parallel Closure Theorem.)

(b) Show confluence of the TRS

or(true,x) — or(z,not(x)),
or(z,true) — or(not(z),x),
or(z,y) — or(y,z)
and explain why the Parallel Closure Theorem does not apply.

Find a TRS R such that for every critical pair (u1,ug) there is a term
t with u; =g t, but =g does not have the diamond property.
Show that = is strongly confluent iff t; « s =2ty = 3It. t1 3¢ &t
The Parallel Closure Theorem relies on an ingenious induction to re-
duce multiple overlaps to critical pairs. This induction can be avoi-
ded by using so-called parallel critical pairs. For example, the rules
f(a,b) — ¢, a — a/ and b — b give rise to the parallel critical pair
¢ — f(a,b) = f(d/,V), in addition to the ordinary critical pairs. For-
mally, a renamed rule | — 7, a set of parallel positions P C Pos(l)
such that I|, ¢ Var(l) for all p € P, a renamed rule I, — r, for each
p € P, and an mgu o of the unification problem {I|, =71, | p € P}
determine a parallel critical pair (o, (ol)[oTp]pep)-

Show that =g is strongly confluent if R is left-linear and the fol-
lowing conditions hold:

6.5 Bibliographic notes 157

(a) (ol)[ore], =R - <R or for all critical pairs (o1, (ol1)[oT2]p)
and
(b) (al)[orplpep — g or for all parallel critical pairs where € ¢ P.

(Hint: combine Exercise 6.21 with an exhaustive case analysis.)

6.5 Bibliographic notes

Although confluence is undecidable in general, it is decidable for finite
ground TRS. This was first shown by Dauchet and Tison using a special
algorithm [67] and later generalized to a whole class of properties of finite
ground TRS [68] and also to finite left-linear right-ground TRS [66].

The theory of critical pairs is due to Knuth and Bendix [145], who proved
Corollaries 6.2.5 and 6.2.6. The definitive version of the theory is due to
Huet [119], whose article is the basis for most of the material in this chapter.
Huet’s article extends the theory to confluence modulo an equational theory
(see Section 11.1).

The study of (almost) orthogonal term rewriting systems started with
Rosen [217] but was again generalized and put into its definitive form by
Huet [119]. His Parallel Closure Theorem was later extended by Toyama
[244, Corollary 3.2] (see Exercise 6.19) and van Oostrom [196]. An alter-
native and incomparable approach based on parallel critical pairs is due to
Toyama [241]. Exercise 6.22 is based on the work of Gramlich [99] who
rediscovered a slightly restricted version of Toyama’s main theorem.

It is still an open problem whether certain modifications of parallel clo-
sure, e.g. replacing ug = u; by u; =3 ug, also guarantee confluence [75,
Problem 13]. :

7

Completion

This chapter is concerned with the question of how to construct a decision
procedure for the word problem for a given finite set of identities E. Because
the word problem is in general undecidable, any such method is necessarily
incomplete, that is, it cannot succeed for all finite sets E. Theorem 4.1.1,
which says that the word problem for F is decidable if — g is convergent,
suggests a first approach, which is, however, not very likely to succeed:

Show termination: Try to find a reduction order > such that s > ¢ holds
for all identities (s ~ t) € E. If this succeeds, consider the term
rewriting system R := {s — t | (s = t) € E}, and continue with this
system in the next step; otherwise fail.

Show confluence: Decide confluence of the TRS R, which is known to
be terminating, by computing all critical pairs between rules in R
and testing them for confluence (see Corollary 6.2.6). If this step
succeeds, the rewrite relation — g yields a decision procedure for the
word problem for E; otherwise fail.

Example 7.0.1 Let E := {z+0~ z, 2+s(y) = s(z+y)}. In the first step,
termination of the rewrite system R := {z +0 — z, z + s(y) — s(z +y)}
can be shown using the lexicographic path order >, that is induced by a
precedence order > satisfying + > s. Confluence of R follows because there
are no critical pairs.

Consequently, R is canonical and can thus be used to decide the word
problem for E. On the one hand, we can now deduce that, for example,
s(s(0)) +s(0) =g s(0) +s(s(0)) holds because these two terms reduce to the
same normal form s(s(s(0))) with respect to R. On the other hand, we can
use R to show that a certain identity is not a consequence of E: for example,
x +y =g y + x does not hold because the two terms are R-irreducible and
distinct.

158

Completion 159

One reason for this simple method to fail is that some identity s =~ ¢ needs to
be turned into t — s rather than s — t. For example, z = x + 0 would yield
a nonterminating rewrite rule £ — x 40, whereas x + 0 — z is terminating.
Thus, a more sensible first step would be one that tries to order the input
identities in an appropriate way:

Show termination: Let E = {s1 = t1,...,5, = t,}. Try to find a reduc-
tion order > such that, for all 7,1 < i < n, there exist terms [;, r;
satisfying {l;, 7} = {si,t;} and l; > 7. If this succeeds, consider the
term rewriting system R := {l; — r1,...,ln — 7} in the next step;
otherwise fail.

Of course, this modified first step may still fail fairly often. This can be
the case either because one of the identities is inherently nonterminating,
such as the identity z + y = y + x, or because we do not succeed in finding
an appropriate reduction order even though such an order exists (recall
that the termination problem for term rewriting systems is not recursively
enumerable).

Even if the first step is successful, the method might still fail because the
resulting terminating rewrite system is not confluent.

Example 7.0.2 Let E := {z+0 ~ z, z+3s(y) = s(z+y)} as in the previous
example, but assume that in the first step we use the Knuth-Bendix order
>0 that is induced by a precedence order > satisfying s > +, and a weight
function w satisfying wo = 1 = w(+) = w(s) = w(0). This yields the
terminating rewrite system R :={z +0 — z, s(z +y) —» =+ s(y) }.

The left-hand side « + 0 of the first rule unifies with the subterm u + v
of the left-hand side of the renamed second rule s(u 4+ v) — u + s(v) with
mgu {u +— z,v — 0}. This yields the critical pair (z + s(0),s(z)). The
terms in this pair are R’-irreducible and distinct, which shows that R’ is not
confluent.

Instead of stopping with failure in this situation, completion uses the com-
puted critical pairs to extend the rewrite system, with the goal of generating
an equivalent confluent system. For example, if we add the (terminating)
rule z +s(0) — s(z) to R/, the critical pair (z + s(0), s(z)) is obviously join-
able in the resulting system R”. It is important to note that adding this new
rule does not change the equational theory generated since +s(0) ~g s(x)
implies ~p = ~gr. However, since R” contains an additional rule, new crit-
ical pairs must be computed and tested for confluence. The computation of
critical pairs is iterated until no more non-joinable critical pairs are found.
This describes the main idea underlying the basic completion procedure.

160 7 Completion
7.1 The basic completion procedure

This procedure, which is described in Fig. 7.1, starts with a finite set of
identities E and tries to find a convergent term rewriting system R that is
equivalent to E, i.e. a system that satisfies g = ~r. We assume that the
reduction order needed in the termination test is provided as an input for
the procedure.

Input:
A finite set E of Y-identities and a reduction order > on T'(%, V).
Output:
A finite convergent TRS R that is equivalent to E, if the procedure
terminates successfully;
“Fail”, if the procedure terminates unsuccessfully.

Initialization:
If there exists (s = t) € E such that s #t, s ptand t ¥ s,
then terminate with output Fail.
Otherwise, i :==0 and Ry:={l > r|(Il~r) e EUE"I Al >Tr}.

repeat R, := R;;
for all (s,t) € CP(R;) do
(a) Reduce s,t to some R;-normal forms , ;
(b) If §# t and neither § > ¢ nor t > 5, then terminate with output
Fail;
(C) Ifs>t, then R;y; := Ri1 U {’S\—-) /t};
(d) Ift >3, then Rijyy := Rj41 U{t — 3}

od

i:=14+1;
until R; = R;_1;
output R;;

Fig. 7.1. The basic completion procedure.

In the initialization phase, the basic completion procedure removes trivial
identities of the form s = s, and tries to orient the remaining nontrivial
identities. If this succeeds, then it computes all critical pairs of the rewrite
system obtained. The terms in each critical pair (s,t) are reduced to their
normal forms § and #. If the normal forms are identical, then this critical pair
is joinable, and nothing needs to be done for it. Otherwise, the procedure
tries to orient the terms 3 and % into a rewrite rule whose termination can be
shown using >. If this succeeds, then the new rule is added to the current
rewrite system. This process is iterated until failure occurs or the rewrite

7.1 The basic completion procedure 161

system is not changed during a step of the iteration, that is, the system does
not have non-joinable critical pairs.

Thus, the basic completion procedure may show three different types of
behaviour, depending on the particular input E and >:

1. It may terminate with failure because one of the nontrivial input identit-
ies cannot be ordered using >, or the normal forms of the terms in one
of the critical pairs are distinct and cannot be ordered using >. In this
case, not much is gained. One could, however, try to run the procedure
again, using another reduction order.

2. It may terminate successfully with output R,, because in the nth step of
the iteration all critical pairs are joinable.

3. It may run for ever since infinitely many new rules are generated.

Before proving that the basic completion procedure is correct, we consi-
der one example for each of the three different types of behaviour of the
procedure.

Example 7.1.1 Consider the theory E := {(z *x y) * (y * 2) = y} defining
so-called central groupoids, and let > be an arbitrary simplification order.
Because of the subterm property of >, we have (z *y) * (y* z) > y, and thus
Ro ={(z *y) » (y * 2) - y}.

Overlapping (z*y)*(y*z) — y with its renamed copy (z'*y’)*(y'*2') — y
yields two critical pairs:

/

e zxy unifies with (z/*y’) * (v *2') with mgu {z — z'xy/,y — ¢/ x2'}:

(@' *y)x (y *2") % (¢ *2') * 2)
Y x 2 < Y x((y x2') % 2)

e y*z unifies with (' *y) x (v *2’) with mgu {y — 2/ xy/,z — ¢/ x2'}:

(xx (') * (&' *y) x (y * 2)

7

' xy (xx (' xy)) xy

162 7 Completion

Since the terms in these critical pairs are Rp-irreducible and can be ordered
(as indicated in the figures) we obtain (after some renaming) the new rewrite
system Rj:

{xy)x(y*2) =y, zx([@xy)*x2) mzxy, (Tx(Y*2))*xz—-yxz}

In the next iteration, all the critical pairs of R; turn out to be joinable
(Exercise 7.2), and thus the procedure terminates successfully with output

R;.
Example 7.1.2 Consider the theory
E={zx(y+2)=(z*xy)+(z*2), (u+v)*w= (uxw)+ (v*w)},

which expresses (left and right) distributivity of % over +. If we take as
reduction order the lexicographic path order >, induced by a precedence
satisfying * > +, then the identities are ordered from left to right, i.e.

Roy={z*x(y+2) — (xxy)+(x*x2), (u+v)*w— (uxw)+ (v*w)}

Overlapping the first rule with the second at the root yields the following
critical pair and corresponding normal forms:

(u+0) * (y +2)

/ N\

((u+v) xy) + ((u+v) *2) (ux(y+2)) + (v (y +2)

|

((uxy) + (*y)) + ((ux2) + (v*2) ;é ((uxy) + (ux2)) + ((v*y) + (v 2))

These normal forms are distinct, and they cannot be ordered using any
reduction order since their instances under the substitution o = {u —
z,v +— z,y — x, z — x} are identical. For this reason, the completion
procedure fails.

Example 7.1.3 To obtain an example for nontermination of the basic
completion procedure, we return to Example 7.0.2, where we have seen that
in the first iteration there is a non-joinable critical pair, which is already
in normal form. This pair can be ordered using the reduction order of
Example 7.0.2, which yields the new system

Ri:={z+0—-z, s(x+y) = z+s(y), v+ s(0) — s(z)}.

7.1 The basic completion procedure 163

An overlap between the second and the third rules yields the critical pair
(x + s(s(0)), s(s(z))), which is in normal form and thus not joinable. This
yields the new system Ry := R; U {z + s(s(0)) — s(s(z))}. It is easy to see
that in each step of the iteration a new rule of the form z + s™(0) — s"(z)
is generated.

Theorem 7.1.4 Let E be a finite set of identities and > be a reduction
order.

1. If the basic completion procedure applied to (E,>) terminates successfully
with output R, then R, is a finite convergent TRS that is equivalent to
E. In this case, R, yields a decision procedure for the word problem for
E.

2. If the basic completion procedure applied to (E,>) does not terminate,
then Roo := ;>0 Ri s an infinite convergent TRS that is equivalent to
E. In this case, the completion procedure can be used as a semidecision
procedure for ~g.

Proof (1) The system R, is finite since it is obtained after finitely many it-
erations, and in each iteration only finitely many rules are added (for a finite
system R;, the set CP(R;) is always finite). Obviously, R, is terminating
by construction since all rules | — r € R, satisfy | > r for the reduction
order >. It is also confluent since the procedure terminates successfully with
output R, only if all critical pairs of R,, are joinable.

To show that ~p, = ~g, we note that g C ~p, follows from the fact
that ~p, =~g and Rg C R; C ... C R,,. For the other direction, we show
by induction on ¢ that ~p, C ~g. The base case is trivial. For the induction
step, we use the fact that s g, t holds for each critical pair (s, t) of R;, and
that the R;-normal forms 5,% of s,t satisfy s ~ R, § and t ~p, t. Thus, we
have § ~p, t, which implies § ~g % by the induction hypothesis.

Finally, because R, is a finite convergent TRS, we know that ~p, = ~g
is decidable by Theorem 4.1.1.

(2) The system R is infinite since in each iteration of the procedure at
least one rule is added. Equivalence of Ry, and E, and termination of R,
can be shown as in the first part of the proof.

We prove confluence of R, by showing that all critical pairs between rules
in Ry, are joinable. Assume that (s,t) is a critical pair between the rules
Il — 1,9 —d€ Ry. Because R = ;>0 Ri and Ro C Ry C ..., this means
that there exists an n > 0 such that [— r,g — d € R,,, which implies that
(s,t) € CP(Ry). Now, either (s,t) is already joinable in R, or it is joinable
in R,41 since an appropriate rule has been added. In both cases, (s,t) is
joinable in the larger system Ro.

164 7 Completion

The semidecision procedure for ~g works as follows: given terms s and
t, it tests after each step of the iteration whether these terms are joinable
with respect to the current rewrite system R,. This test can be computed
in finite time since R, is finite and terminating, and thus — g, is globally
finite by Lemma 2.2.4. If, for some n, s and ¢ turn out to be joinable, then
obviously s ~g t holds.

Conversely, assume that s ~g ¢t holds. Because R, is a convergent TRS
that is equivalent to F, this implies that s and ¢ are joinable with respect
to Roo. The corresponding reduction chains use only finitely many different
rewrite rules of Ro. Since Roo = lU;>¢ Ri and Ry C Ry C ..., there exists
an n such that all these rules are already contained in R,. Thus, s and t
are joinable with respect to R,,. O

Exercises

7.1 Consider the following sets of identities:

Ey :={f(9(f(2))) =z} and Ep:={f(9(f(z))) = f(9(z))}-

Choose an appropriate reduction order > and apply the basic com-
pletion procedure to the input (E;,>) (i = 1,2).
7.2 Show that the TRS

{@xy)*(y*2) =y, zx (@ *y)*2) = zxy, (T (y*2))xz > y*2}

is confluent.

7.2 An improved completion procedure

In practice, the basic completion procedure described above usually gen-
erates a huge number of rules. Since all of them must be taken into ac-
count when computing critical pairs, both the run time of and the space
requirements for the completion process are often unacceptably high. For
this reason, all implementations of completion “simplify” rules by reducing
them with the help of other rules. If both sides of a rule reduce to the same
term, the whole rule can be removed. Even though this appears to be very
natural, it has turned out to be surprisingly hard to show that simplification
does not destroy correctness of the completion procedure.

In the following, we present an improved completion method that extends
basic completion by simplification of rules. Following Bachmair [14], this
method is described by a set of inference rules that covers a wide range of

7.2 An improved completion procedure 165

different specific completion procedures. Consequently, our proof of correct-
ness applies to a whole class of completion procedures. A specific completion
procedure is obtained from this set of rules by fixing a strategy for rule
application, that is, a method that determines in each situation which rule
to apply next. It should be noted that such a strategy may also decide not
to apply any rule (and thus cause the completion procedure to terminate)
even though there are applicable rules.

The inference rules, which are given in Fig. 7.2, work on pairs (E, R)
where F is a finite set of identities and R is a finite set of rewrite rules.
Intuitively, E contains input identities or critical pairs that have not yet
been transformed into rules, whereas R is a terminating set of rewrite rules.
As with basic completion, termination of R is ensured by a reduction order
> that is given as an input to the completion procedure. The goal is to
transform an initial pair (Ey, }) into a pair (), R) such that R is convergent
and equivalent to Ey. A completion procedure using these rules may achieve
this goal after finitely many inference steps, it may fail (either after finitely
many steps or “in the limit”), or it may achieve the goal “in the limit”.

DEDUCE B, R if s u t
—_— — —
EU{s~t}R RETR
EU{s~t}LR .
—_— f t
ORIENT ERUs =1 if s>
Eu{s~s}hR
D —_—
ELETE ER
SIMPLIFY-IDENTITY E—U{M if s—>gpu
EU{u~thR R
E,RU{s —t} .
R-SIMPLIFY-RULE m if ¢ —RU
E,RU{s —t} e 7
L-SIMPLIFY-RULE EUfu~iL.R if s>gpu

Fig. 7.2. The inference rules for completion.

The rule DEDUCE derives an identity that is a direct consequence of rules in
R, and adds this identity to E. A special case of applying this rule is adding
a critical pair of R to E. Most completion procedures use the rule DEDUCE
only in this way. An advantage of the more general formulation is that the

166 7 Completion

correctness result applies to a larger class of completion procedures, while
its proof does not become more complex.

ORIENT takes an identity that can be ordered with the help of >, and
adds the corresponding rule to R. Note that the dot in s &~ ¢ is meant to
indicate that this identity should be seen as an unordered pair, i.e. s =t € E
means that s &t € E or t ® s € E. This notation avoids the need for two
versions of ORIENT, one where the left-hand side is larger, and one where
the right-hand side is larger.

DELETE removes a trivial identity, and SIMPLIFY-IDENTITY uses R to
reduce identities. By applying SIMPLIFY-IDENTITY to a given identity as
long as possible one can reduce the terms occurring in the identity to their
R-normal forms. Again, the notation s & t is employed to avoid writing two
versions of the rule. Taken together, SIMPLIFY-IDENTITY and DELETE can
be used to remove joinable critical pairs.

R-SIMPLIFY-RULE reduces the right-hand side of a rule. Since, by assump-
tion, termination of R can be shown using >, we know that s - gt =g u
implies s > ¢t > u. For this reason, s — u can be kept as a rule. In con-
trast, when reducing the left-hand side of a rule s — ¢ to u, it is not clear
whether u > t is satisfied. For this reason, L-SIMPLIFY-RULE adds u ~ t
as an identity. The notation s g u is used to express that s is reduced
by a rule ! — r € R such that ! cannot be reduced by s — t. The symbol
T stands for the strict part of the encompassment quasi-order -1, which
is defined as s J [iff some subterm of s is an instance of I. Obviously,
s = | means that s is reducible with any rule that has ! as its left-hand
side. If s 1O [, that is, s -J [but [4 s, then no rule with left-hand side s
can reduce [. For example, f(z,z) 2 f(z,y) since f(z,z) is a subterm of
itself, and f(x,z) = o(f(x,y)) for the substitution o := {y — z}. Since no
subterm of f(z,y) is an instance of f(z, z), we have f(z,z) 3 f(z,y). Thus,
if R:={f(z,z) — z, f(z,y) — x}, then L-SIMPLIFY-RULE can be applied
to f(z,z) — z. If R:= {f(z,y) — z, f(z,y) — y}, then L-SIMPLIFY-RULE
cannot be applied. From a proof-technical point of view, the need for such
a restriction of the applicability of L-SIMPLIFY-RULE will become clear in
the proof of Lemma 7.3.4. Example 7.2.9 will illustrate what may go wrong
if this restriction is removed.

We write (E, R) k¢ (E', R') to indicate that (E, R) can be transformed
to (E', R") by applying one of the inference rules of Fig. 7.2.

The inference rules generate terminating rewrite systems since all rules
are oriented with the help of the reduction order >:

Lemma 7.2.1 If RC > and (E,R) ¢ (E',R'), then R C >.

7.2 An improved completion procedure 167

It is an obvious consequence of this lemma that the rewrite system R in the
pair (E, R) is terminating if this pair has been obtained from an initial pair
of the form (Ep,?) by application of the inference rules.

Next, we show that the inference rules are sound in the sense that they
do not change the equational theory generated.

Lemma 7.2.2 (E1, R1) b¢ (E2, R2) implies ®g,ur, = ~E,UR,-

Proof This is trivial for the first three rules. For SIMPLIFY-IDENTITY, E; =
EU{s~t}, BEo=FEU{u~t}, Ri = R= Ry, and s —g u. Thus, we have
u Rg,UR, t, which shows that ~g,ur, C ~g,ur,. Conversely, u ~ t € Es,
s »r u, and R = Ry imply s ®g,ur, t, and hence ~g,ur, C RE,uR,-

For R-SIMPLIFY-RULE, we have By = E = E;, Rj = RU {s — t},
Ry = RU{s — u}, and t —g u. Obviously, s - t € Ry, t —»g u, and
R C R, imply s ®g,uR, 4, and s — u € Ry, t —»gp u, and R C Ry imply
8 X®p,UR, t- This shows that ~g,ur, = *E,UR,-

L-SIMPLIFY-RULE can be treated similarly. O

As mentioned above, a specific completion procedure is obtained from the
inference rules of Fig. 7.2 by fixing a strategy for rule application. This is
formalized in the next definition.

Definition 7.2.3 A completion procedure is a program that accepts as
input a finite set of identities Fy and a reduction order >, and uses the rules
of Fig. 7.2 to generate a (finite or infinite) sequence

(Eo, Ro) F¢ (E1, R1) ¢ (B2, R2) ¢ (E3,R3) ¢ -+,

where Ry := (). This sequence is called a run of the completion procedure
on input Ey and >.

By Lemma 7.2.1, all R; are contained in the reduction order >. In order to
be able to treat finite and infinite runs simultaneously, we extend every finite
run (Ep, Ro) k¢ - - - F¢ (En, Ry) to an infinite one by setting (Ep4i, Rnti) ==
(En, Ry) for all i > 1. The set E,, of persistent identities and the set R,
of persistent rules of a run (Ey, Ry) F¢ (F1, R1) ¢ - - - are defined as
E,=|J(E; and R,:=J[R;
120521 120524

For a finite run (Ep, Ro) F¢ -+ F¢ (En, Rp), which has been extended as
described above, the set of persistent identities (rules) is just the set E,
(Rp). For an infinite run, persistent identities (rules) are identities (rules)

that belong to some E; (R;) and are never removed in later inference steps.
The basic completion procedure described in Section 7.1 can be considered

168 7 Completion

as a completion procedure in the sense of the above definition: as noted
above, DEDUCE can be used to compute critical pairs, SIMPLIFY-IDENTITY
reduces them to normal form, ORIENT turns them into rules if the normal
forms can be ordered by >, and DELETE removes joinable critical pairs.
The rules R-SIMPLIFY-RULE and L-SIMPLIFY-RULE are not used by the
basic completion procedure.

Example 7.2.4 Asin Example 7.1.1, we take the theory Ep := {(x*y)*(yx*
z) ~ y} and an arbitrary simplification order > as input of the completion
procedure. An application of ORIENT yields

(Eo, 0) Fe (0, {(z*y) * (y*2) = v}).

Two applications of DEDUCE allow us to derive the pair

({zlemmazenl eswen—n),

(xx(yx2))*xz2~yx*z
which, by two applications of ORIENT, can be turned into the pair (Ej, R;):

(@xy)x(y*x2) =y,
0, z*((Txy)*2z) > T*y,
(@x(y*z)*xz—>yxz

By applying DEDUCE, the critical pairs between these rules can be put into
the first component of the pair (Ei, R;), and SIMPLIFY-IDENTITY can be
used to reduce these critical pairs to trivial identities, which can then be
removed using DELETE. After this, the basic completion procedure termi-
nates with success, which means that no more inference rules are applied.
As described above, the finite run thus obtained is extended to an infinite
one. This yields E, = E; =0 and R, = R;.

More generally, it is easy to see that, for a non-failing run of the basic
completion procedure, that is, a run that terminates successfully or does
not terminate, F, = () (since all identities are turned into rules) and R, =
Ui>o Ri = Reo (since rules are never simplified). If the basic completion
procedure terminates with output Fail, then E, # (): the non-orientable
identity that causes the failure (during an attempt to apply ORIENT to it)
is contained in the current set of identities, and thus in all subsequent sets
of identities in the infinite extension of the finite run. This motivates the
following definition for arbitrary completion procedures.

Definition 7.2.5 A run on input Ep of a completion procedure is said to
succeed iff F, =) and R, is convergent and equivalent to Ey. The run

7.2 An improved completion procedure 169

fails iff E, # (. A completion procedure is correct iff every run that does
not fail succeeds.

For the basic completion procedure, this notion of failure coincides with
the one introduced in Section 7.1, where failure occurs if an input identity
cannot be oriented or the normal forms of a critical pair are distinct (i.e.
cannot be removed using DELETE) and cannot be oriented using > (i.e.
cannot be transformed from an identity into a rule). In this case, the basic
completion procedure terminates, that is, failing runs of basic completion
are finite. The next example shows that an arbitrary completion procedure
may also have infinite failing runs.

Example 7.2.6 First, consider the behaviour of basic completion on the
input (Eo, >,), where

Ep := {h(z,y) = f(z), h(z,y) = f(y), 9(z,y) = h(z,y), 9(x,y) ~ a}

and >, is the lexicographic path order induced by the precedence g > h >
f > a. The basic completion procedure uses ORIENT to generate the rules

R, = {h(x’y) - f(x)a h(x,y) - f(y)a g(xay) - h(l‘,y), g(x, y) - (I,},

and then DEDUCE to compute the critical pairs f(z) =~ f(y) and h(z,y) =
a. It then tries to simplify and orient these critical pairs. Obviously, the
terms in f(z) ~ f(y) are Ry-irreducible, and they cannot be compared with
any reduction order. Thus, basic completion fails on this input. However,
the second critical pair h(z,y) ~ a could have been oriented into the rule
h(z,y) — a. Using this rule to compute critical pairs would have provided
us with the identity f(z) ~ a and, since this identity can be oriented from
left to right, with the rule f(z) — a. Finally, this rule could have been used
to reduce f(z) ~ f(y) to the trivial identity a =~ a.

This shows that it makes sense not to terminate with failure if a reduced
and non-orientable identity is encountered. Instead, one simply defers the
orientation of this identity until new rules are obtained. If the new set
of rules allows one to simplify the identity to an orientable or trivial one,
then one can apply ORIENT or DELETE. Otherwise, the treatment of this
identity is again deferred. For the input (Ep, >,,) from above, this strategy
would yield a finite successful run of the completion procedure. However,
this strategy may lead to infinite failing runs. For example, for the input
(Eé, >lp0) with

Ep = {h(z,y) = f(2), h(=z,y) = f (), f(9(f())) = f(g(=))},

170 7 Completion

it generates an infinite run such that E, = {f(z) = f(y)} and
Ry, = {h(z,y) — f(z), h(z,y) — f)} V{fg"f(z) = fg"(x) [n = 1}.

Theorem 7.1.4 shows that basic completion is correct in the sense of Defi-
nition 7.2.5. Without an additional fairness assumption, an arbitrary com-
pletion procedure need not be correct. Obviously, a necessary condition for
correctness is that all the relevant critical pairs are computed.

Definition 7.2.7 A run of a completion procedure is called fair iff

CP(R,) € | E:.

i>0
A completion procedure is fair iff every non-failing run is fair.

In the next section, we shall prove that this condition is also sufficient for
correctness:

Theorem 7.2.8 Every fair completion procedure is correct.

It should be noted that correctness is not the only criterion for evaluating
the quality of a completion procedure. Another criterion is how often the
procedure fails. For basic completion, failure occurs only if a non-orientable
identity or critical pair is encountered. An arbitrary completion procedure
may, for example, fail because it simply chooses to ignore some of the critical
pairs (i.e. it never applies SIMPLIFY-IDENTITY or ORIENT to them, even
though this would be possible). In particular, a completion procedure that
always fails is correct in the sense of Definition 7.2.5.

We conclude this section with an example that demonstrates that the
encompassment condition in L-SIMPLIFY-RULE cannot be dispensed with.

Example 7.2.9 Consider the set Ey := {f(9(f(x))) = f(g9(z)), 9(9(z)) =
g(z)} and the lexicographic path order >, induced by f > g, and assume
that, in the formulation of L-SIMPLIFY-RULE, “s —g u’ is replaced by
“s —p u”. We will construct a non-failing and fair run on input (Ep, >,,)
(using the modified rule L-SIMPLIFY-RULE) such that the set R, of persist-
ent rules is not equivalent to Fy. The main idea underlying this construction
is to generate infinitely many rules I, — r, with identical left-hand sides
In = fgf(x), but different right-hand sides r, = fg2" (). For all n > 1, the
rule I, — 7y, is then simplified by l,,41 — 7,41 using the modified rule L-
SIMPLIFY-RULE. Consequently, none of the rules I, — r, will be persistent.
Starting with (Ep,?), two applications of ORIENT yield the pair

@, {f9f(x)— fg(z), gg(z) — g(z)}).

7.2 An improved completion procedure 171

First, DEDUCE adds the trivial identity gg(z) ~ gg(z), which is obtained
by overlapping the second rule with itself. Obviously, this identity can be
removed with the help of DELETE. Second, DEDUCE adds the critical pair
fggf(x) = fgfg(x), which is obtained by overlapping the first rule with
itself. Two applications of SIMPLIFY-IDENTITY can be used to reduce this
identity to the form fgf(z) =~ fgg(z). Finally, ORIENT turns this identity
into a rule. Note that we have not applied SIMPLIFY-IDENTITY exhaustively.
Even though this may not be a good strategy for rule application, it does
not cause failure (since the identity can be oriented even though it is not
completely reduced). To sum up, we have reached the pair

@, {fgf(x)— fg(z), f9f(x) — fgg(x), gg(x) — g(x)}).

The modified rule L-SIMPLIFY-RULE reduces the first rule to the identity
fgg9(z) = fg(z), and SIMPLIFY-IDENTITY reduces this identity to the triv-
ial identity fg(x) =~ fg(z), which is removed by DELETE. Thus we have

generated the pair (0, {fgf(z) — fgg(x), gg9(z) — g(z)}).
Now, assume that we have already generated the pair

(0, {f9f(@) — fo*" (@), 99(z) = 9()})

for some n > 1. Using the same strategy as in the case n = 1, we can first
generate the pair

(0, {f9f(@) = £97" (@), f9f(@) — fg*"" (@), 99(z) — 9(@)}),

and then with the help of L-SIMPLIFY-RULE, SIMPLIFY-IDENTITY, and DE-
LETE the pair

(0, {f9f(@) = £ (2), 99() = 9(2)}) -

It is easy to see that this way we generate a fair and non-failing run. How-
ever, R, = {g99(x) — g(x)} is not equivalent to Ey.

Exercises

7.3 Show that the encompassment relation J is a quasi-order, and that
its strict part 1 is a well-founded strict partial order.

7.4 Let = denote the equivalence relation that is induced by -J, i.e. s =1t
iff s J¢tandt Js. Show that s = ¢ holds iff s and ¢ are equal up
to renaming. Show that, for a given term s, there exist up to = only
finitely many terms ¢t such that s 1 ¢.

172 7 Completion
7.3 Proof orders

Proof orders are a convenient tool for showing correctness of an arbitrary
fair completion procedure. The presence of the inference rules L-SIMPLIFY-
RULE and R-SIMPLIFY-RULE makes this proof considerably harder than for
basic completion (in particular for infinite runs): Of course, in a non-failing
and fair run, all relevant critical pairs are computed (because CP(R,) C
Ui>o Ei), and these critical pairs are joinable with respect to the set ;> R;
of all computed rules (because E,, = 0). It is, however, not at all obvious
that the critical pairs are also joinable with respect to the set R, of persistent
rules. Similarly, even though all sets F; U R; are equivalent to Ej, it is not
clear why R, is equivalent to Ej.
In the following, we assume that

(Eo,0) F¢ (E1, R1) Fc (E2, Ro) e (B3, R3) F¢ -+

is an arbitrary but fixed non-failing and fair run of a completion procedure.
We define Ry, := Uizl R; and E, := Uizo E;.

Definition 7.3.1 A proof of an identity s ~ ¢t in Ey, U Ry is a finite
sequence (8o, ..., S,) of length n + 1 > 0 such that sop = s, s, =t, and for
alli,1 <1 <n,

1. 84-1 <@g, Si, Or
2. 8i—1 —R,, Si, O

3. 8i ™ Roo Si—1-

For ¢ =1,...,n, the pairs (s;—1, s;) are called proof steps. Two proofs in
E+ U Ry are called equivalent iff they prove the same identity. A proof
(80y---,8n) in Foo U Ry is called a rewrite proof in R, iff there exists

k,0 < k < n, such that s;_; —pg, s; for all 4,1 <i <k, and s; <R, si+1 for
all i,k <i<n.

Obviously, the identity s ~ ¢ has a proof in Esx U Ry iff s =g _ur, t
holds. The difference between a proof and a rewrite proof of an identity is
illustrated in Fig. 7.3.

Our goal is to show that every proof in Fo, U R, is equivalent to a rewrite
proof in R,,. Theorem 7.2.8, which says that every fair completion procedure
is correct, can be obtained as an immediate consequence of this fact. We
will prove the goal by well-founded induction. For this purpose, we define a
well-founded order >¢ on proofs (a so-called proof order), and show that
for every proof that is not a rewrite proof there exists an equivalent proof
that is smaller with respect to >¢.

7.8 Proof orders 173

Fig. 7.3. An arbitrary proof (upper part) and a rewrite proof (lower part).

Definition 7.3.2 For a given proof P = (so,...,Sp), the “cost” c(s;—1, ;)
of a proof step (s;—1,s;) is a triple that is defined as follows:

1. If s;—1 © g, S, then c(si—1, 8;) := ({si-1, 8i}, —, —), where the first com-
ponent is a multiset of terms, and the other components are irrelevant,
i.e. “=” stands for an arbitrary term.

2. If si—1 —R,, 8i with | — 1 € Ro, then c(s;—1, 8;) := ({si-1},1, 8i)-

3. If s; =R, 8i—1 with | — r € Ro, then ¢(s;i—1, ;) := ({si}, !, 8i-1)-

The overall cost of the proof P is the multiset c(P) of the costs of all its

proof steps.

Proof steps are compared using the lexicographic product of

1. the multiset extension of the reduction order > in the first component,

2. the strict part 1 of the encompassment quasi-order in the second com-
ponent, and

3. the reduction order > in the third component,

and proofs are compared using the multiset extension of this lexicographic
product. This defines the relation ¢ on proofs.

Lemma 7.3.3 The relation >¢ is a well-founded order.

Proof The reduction order > and its multiset extension are obviously well-
founded orders, and we have seen in Exercise 7.3 that 1 is a well-founded
order. Thus, their lexicographic product and the multiset extension of this
product are also well-founded orders. O

174 7 Completion

© Si—1 OB Si = z::i :2: z: (1.1)

- 8im1 OB, Si—1 ‘- BN < 841 - (]_.2)

* 8i—1 ©E, Si = * 8i—1 —Roo s B Si (1.3)

* 8i—1 DRy, Si ** = * Sie1 —™Re 8 Ry si 0 (21)

* 8i—1 —Reo Si *°* - - 8i—1 DR, S OB, Si (2.2)

* 8i_1 “R, S —R, Sit+1 "'+ = - 8i—1 lR, Siy1 - (3.1)
*© 8i—1 <R, Si ™R, Si+1 *** = © Si—1 SO Ey Sitl t (3.2)

Fig. 7.4. The proof transformations applied in the proof of Lemma 7.3.4.

Lemma 7.3.4 Let P be a proof in Eo U Ry that is not a rewrite proof in
R,,. Then there exists a proof P' in Ey U Ry such that P’ is equivalent to
P and P>¢ P'.

Proof If P = (so,..., sn) is not a rewrite proof in R,,, then there are three
possible reasons:

1. P contains a proof step that is in E.
2. P contains a proof step that is in Re — R
3. P contains an R,-peak, i.e. a subproof of the form

8i—1 <R, Si —R,, Si+1-

In the following, we consider each of these three cases separately. (Fig. 7.4
summarizes the transformations that are applied to subproofs in each of the
subcases considered below.)

(1) Assume that s;—1 < g s; with an identity s ~ ¢t € Es. The cost of
this proof step is ¢(si—1, s;) = ({si-1, 8}, —, —). Since E,, = 0, the identity
s & t is removed from the set of identities at some stage of the inference
process using ORIENT, DELETE, or SIMPLIFY-IDENTITY.

(1.1) Assume that ORIENT has replaced the identity s ~ ¢t by the rule
s — t. Then s — t € R, and we can replace the proof step s;—1 < g, s; in
P by either s;_1 —pg_, 8ior si—1 <R, Si- The cost of this new proof step is of
the form ({s;—1},...) or ({s:},...), and thus smaller than ({s;-1, s}, —, —)-
This shows that the new proof P’ obtained in this way satisfies P =¢ P'.

(1.2) Assume that DELETE has removed the identity s ~ ¢t because s = t.
Thus s;—1 = s;, which shows that P’ := (sg,...,8i—1,8i+1,---,8r) is also a
proof of sg & s,. Obviously, P »=¢ P’ is satisfied.

7.8 Proof orders 175

(1.3) Assume that SIMPLIFY-IDENTITY has been applied to s = t because
s —g, u. Thus, we have u ~ t € Ey, and s —pg, u. Assume (without
loss of generality) that s;_1|, = o(s) and s; = s;_1[0(t)],. If we define
s := s;_1]lo(u)]p, then s;_1 —pr, s and 8’ < g s; are valid proof steps in
E, U Ry. Let P’ be the proof that is obtained from P by replacing the
step (8i—1, 8;) by the two steps (si—1,s’) and (s',s;). The cost ¢(s;—1,8') =
({si=1},...) of the first (rewrite) step is obviously smaller than ¢(s;—1, s;) =
({8i-1,8:},.-.).- The cost ¢(s',s;) = ({, si},...) of the second (equational)
step is smaller than c(s;—1,s;) since s’ < s;—1. Thus, we have P = P’
because the triple c(s;—1, s;) is replaced by the two smaller triples c(s;—1, s")
and c(s, s;) when going from ¢(P) to c(P’).

(2) Assume (without loss of generality) that s;—1 —g, s; with a rule
s — t € Ry — Ry, at position p in s;_; with substitution o, i.e. s;—1|, = o(s)
and s; = s;_1][o(t)]p. The cost of this proof step is ¢(s;—1, ;) = ({si-1}, s, 8i)-
Since s — t ¢ R,,, the rule s — t is removed from the set of rules at some
stage of the inference process using R-SIMPLIFY-RULE or L-SIMPLIFY-RULE.

(2.1) Assume that R-SIMPLIFY-RULE has replaced s — t by s — u be-
cause t —pg, u. Thus, we have s — u € Ry and ¢t —g_ u. If we define
s = s;—1]|o(u)], then s;_1 — g, ¢ and s’ «—pg_ s; are valid proof steps in
Eo U Ry. Let P’ be the proof that is obtained from P by replacing the
step (s;—1, ;) by the two steps (si—1,s’) and (s, s;). The cost ¢(s;—1,8') =
({si-1}, s, 8’) of the first step is smaller than c(s;—1, s;) = ({si-1}, s, 8;) since
s’ < s;. The cost c(s',s;) = ({si},...) of the second step is smaller than
c(si—1, 8;) since s; < ;1.

(2.2) Assume that L-SIMPLIFY-RULE has replaced the rule s — t by the
identity u = t because s =g, u with a rule | — r € Ry such that s 3 [.
Thus, we have u & t € Es and s — g, u. If we define s’ := s;_1[o(u)],
then s;_1 — g, ¢ and ' < g s; are valid proof steps in Ey U Ry. Let P’
be the proof that is obtained from P by replacing the step (s;—1, s;) by the
two steps (s;—1,8’) and (s, s;). The cost ¢(si—1,5") = ({si-1},1, ") of the
first step is smaller than c(s;—1,s;) = ({si—1}, 8, ;) since s T I. The cost

(s s;) = ({§',8:i},...) of the second step is smaller than c(s;—1,s;) since
s’ < s;_1 and s; < s;_1.

(3) Assume that s; —g, si—1 with a rule [— r € R,, at position p, and
that s; =g, siy1 with a rule ¢ — d € R,, at position q.

(3.1) If there is no overlap between the two redexes (i.e. p||q) or the overlap
is non-critical, then s;_1 |r, Si+1, as shown in Section 6.2. Thus, there exist
terms U1, ..., Upy,V1,-..,Un—1 such that

8i—1 ™R, U1 ™R, *** Ry, Um <R, Un—1 <R, "' <R, V1 <R, Si+1

176 7 Completion

is a valid sequence of proof steps in Eo, U Ro. Let P’ be the proof that
is obtained from P by replacing the two steps si—1 «gr, $i —R, Si+1 by
this sequence. It is easy to see that the cost of each proof step in this
sequence is smaller than the cost c(s;, siy1) = ({si},...) of si =R, Si+1,
since 8; > 8;—1 > Uy > -+ > Uy and 8; > 8i41 > VL > 0 > Up_1.

(3.2) Assume that the peak s;—1 «pg, 8; =R, Sit+1 is due to a critical
overlap of the rules [— r and ¢ — d. By the Critical Pair Lemma, there
is a critical pair (s,t) € CP(R,,) such that s;_1 can be rewritten to s;41
using the identity s = t. Because of the fairness assumption, we know that
82t € Eo. Thus, s;_1 < g, Si+1 is a valid proof step in E,, U Ry. Let P’
be the proof that is obtained from P by replacing the two steps s;—1 «—r,
$; —R, Si+1 bY Si—1 < B, Si+1. The cost ¢(si—1,8i+1) = ({8i=1,8i+1},---)
of this step is smaller than the cost c(s;, s;i+1) = ({si},...) of i =R, Si+1
since s;—1 < s; and s;41 < ;. O

The treatment of L-SIMPLIFY-RULE in the above proof shows that, instead
of the strict encompassment order, an arbitrary well-founded strict order on
the left-hand sides of the rules in R, could have been employed to restrict
the applicability of this inference rule. The reason for using encompassment
is that one wants to keep the restriction as weak as possible: if s can be
reduced with the rule [— r, then one already knows s -1 [. An even less
restricted applicability condition can be obtained by using a well-founded
order that extends J; for example, s > [iff s O 1 or s - [and the rule
I — r has been generated before s — t during the run of the completion
procedure.

We sum up the results of this section in a theorem. As an obvious con-
sequence, we obtain that every fair completion procedure is correct. This
completes the proof of Theorem 7.2.8.

non-failing and fair run of a completion procedure.

1. Every proof in Eo, U R is equivalent to a rewrite proof in R,,.

2. R, is equivalent to the set of input identities Ey.

3. R, is convergent.

4. If R, is finite, then the word problem for Ey is decidable. Otherwise, the
run yields a semidecision procedure for ~g,.

Proof (1) The first part of the theorem is proved by well-founded induction
on the well-founded proof order >~¢. Let P be a proof in Eooc U Ryo. If P
is itself a rewrite proof in R,,, then we are done. Otherwise, Lemma 7.3.4

7.8 Proof orders 177

yields an equivalent proof P’ such that P >¢ P’. By induction, P’ (and
thus also P) is equivalent to a rewrite proof in R,,.

(2) The inclusion ~g, C ~p, is an easy consequence of Lemma 7.2.2.
The other direction follows from (1) since every proof in Ey C Eo, U Ry is
equivalent to a proof in R,,.

(3) Termination of R,, is an easy consequence of Lemma 7.2.1. Confluence
of R,, again follows from (1) since every proof in R,, C EsUR« is equivalent
to a rewrite proof in R,,,.

(4) By Theorem 4.1.1, a finite convergent term rewriting system that is
equivalent to Ey yields a decision procedure for the word problem for Ej.

The semidecision procedure for ~g, works similarly to the one obtained
from basic completion: Given terms s and t, it tests after each inference step
whether these terms are joinable with respect to the current rewrite system
R,. If, for some n, s and t turn out to be joinable, then obviously s ~g t
holds.

Conversely, assume that s ~g, t holds. Because R,, is a convergent TRS
that is equivalent to Ey, this implies that s and ¢ are joinable with respect
to R,. The corresponding reduction chains use only finitely many different
rewrite rules of R,. Consequently, there exists an n such that all these
(persistent) rules are already contained in R,. Thus, s and t are joinable
with respect to R,. O

Exercise

7.5 The simple semidecision procedure described in the proof of The-
orem 7.3.5 is rather inefficient because after each inference step it
tests whether s and t are joinable by computing all normal forms of
s and t with respect to the (possibly non-confluent) TRS R,,. Show
that the following procedure is also a semidecision procedure for ~g:
Let so := s and ty := t. After the first inference step, the procedure
computes arbitrary Ri-normal forms s; and ¢; of sg and ty. After the
second inference step, it computes arbitrary Ra-normal forms s; and
ta of s1 and t1, after the third step arbitrary Rs-normal forms s3 and
t3 of so and t, etc. It answers with “yes” (that is, s ®g, t) if s, =t
for some n > 0. (Hint: show the following:

® s~p, sy, and t ®g, t, for all n > 0.
e Since R, is terminating, there is an n > 0 such that s, = s, and
tn = tm, for all m > n.)

178 7 Completion

7.4 Huet’s completion procedure

Huet was the first to give a complete proof of correctness of a completion
procedure that allows for simplification of rules [120]. Compared to the proof
method used above, Huet’s proof is rather complex, and its applicability is
restricted to one specific completion procedure. In this section, we present
Huet’s procedure as a concrete example of a correct completion procedure
(see Fig. 7.5). We will see that correctness of this procedure is not an
immediate consequence of Theorem 7.2.8 since the procedure is not fair in
the sense of Definition 7.2.7. However, it satisfies a slightly weaker fairness
condition, which turns out to be sufficient for Lemma 7.3.4 to hold.

Like the inference rules for completion, Huet’s procedure works on a set
E of identities and a terminating set R of rewrite rules. In order to keep
track of whether a rule has already been used for computing critical pairs,
rules may be marked or not.

The following series of lemmas shows that Huet’s procedure is a correct
completion procedure, provided that it employs an appropriate strategy for
computing critical pairs. In addition, a run of this procedure fails (in the
sense of Definition 7.2.5) iff the procedure terminates with output Fail.

Lemma 7.4.1 Huet’s completion procedure is a completion procedure in the
sense of Definition 7.2.3.

Proof The computation of critical pairs in the outer while-loop can be
realized using DEDUCE. Step (b) of the inner while-loop can be achieved
using SIMPLIFY-IDENTITY, and (c) corresponds to DELETE. Step (e) can be
achieved using ORIENT, R-SIMPLIFY-RULE, and L-SIMPLIFY-RULE. This is
trivial for the orientation step. In order to show that R-SIMPLIFY-RULE
can be used to generate the rules g — de R; 11, one must prove that the
simultaneous reductions d = R, J, which are all done with the original system
R;, can be realized by a sequence of R-SIMPLIFY-RULE steps, in which the
already partially modified TRS must be used in each simplification step.
This is an immediate consequence of Exercise 7.6 below. Finally, note that
the strict encompassment condition of L-SIMPLIFY-RULE is satisfied when
reducing the left-hand side of a rule ¢ — d € R; with [— r since [is in
R;-normal form, and thus ! 2] g is not possible for a rule g — d € R,. a

Lemma 7.4.2 A run of Huet’s completion procedure fails iff the procedure
terminates with output Fail.

Proof 1If Huet’s procedure terminates with output Fail, then there is an
identity that cannot be turned into a rule by simplification and orientation.
Thus, E,, # 0. To show the converse, assume that Huet’s procedure does not

7.4 Huet’s completion procedure 179

Input:
A finite set E of X-identities and a reduction order > on T'(%, V).
Output:
A finite convergent TRS R; that is equivalent to E, if the procedure
terminates successfully; “Fail”, if the procedure terminates unsuccess-
fully. If the procedure does not terminate, it generates an infinite limit
system R, that is convergent and equivalent to E.

Initialization:
Ry:=0; Ey:=E; i:=0;

while E; # () or there is an unmarked rule in R; do
while E; # 0 do
(a) Choose an identity s =~ t € E;;
(b) Reduce s,t to some R;-normal forms 3, #;
(c) If 5=71, then

Riy1:=R;;
Eit1:=E; - {s=t}
1 =141

(d) Otherwise, if § % ¢ and £ 5, then terminate with output Fail;
(e) Otherwise, let I, be such that {I,r} = {5,%} and | > r;

Riy1 == {g—d | g— d€R; gcannot be reduced
with [— r, and d is a normal
form of d w.rt. R;U{l — r}}
u{l—- i}’
(* g — d inherits the marker of g — d *)
(* I — r is not marked *)
Ei+1 = (El - {S ~ t}) (@]
{9 =d | g—deR,;and g canbe
reduced to ¢’ with [— r};
1 = 141

od (* end of inner while-loop *)
If there is an unmarked rule in R;, then let [— r be such a rule.

Riy1 = Ry
Eiy1 = {s=t | (s,t)is a critical pair of | — r with
itself or a marked rule in R;};
1 = 141
Mark [—r;
od (* end of outer while-loop *)

output R;;

Fig. 7.5. Huet’s completion procedure.

terminate with output Fail. In order to prove that E, = 0, i.e. that there

180 7 Completion

are no persistent identities, it is sufficient to show that the inner while-loop
always terminates. For this purpose, we associate with each iteration of the
loop a multiset of pairs that is defined as follows:

K; :={({s,t},1) | s=te E;}U{({l,r},0) |l - r € R;}.

The first components of the pairs are ordered using the multiset order indu-
ced by the reduction order >, the second components are ordered 1 > 0, and
the pairs are ordered using the lexicographic product of these two orders.
Finally, the multisets K; are ordered using the multiset extension of this
order on pairs. The order > obtained is obviously well-founded, and it is
easy to show that K; > K1 holds in each iteration of the inner while-loop.

O

Obviously, the procedure can only be correct if choosing an unmarked rule
for computing critical pairs is realized in a “fair” manner, i.e. if there is
no unmarked persistent rule. This can, for example, be realized by always
choosing the oldest unmarked rule. Nevertheless, this does not yield a com-
pletion procedure that is fair in the sense of Definition 7.2.7. The reason
is that new rules that are obtained by simplifying the right-hand sides of
existing rules inherit the marker of the corresponding old rule. Thus, if the
old rule has already been chosen for computing critical pairs, the new rule is
not chosen again. Consequently, the fairness condition CP(R,,) C E need
not be satisfied if the simplified rule turns out to be persistent. The next
lemma shows, however, that the critical pairs computed for the old rules also
serve their purpose for the new simplified rules (see Theorem 7.4.4 below).

Lemma 7.4.3 Consider a run of Huet’s procedure and assume that there
are no unmarked persistent rules. If a peak s;—1 <R, Si —R, Si+1 1S due
to a critical overlap, then there exist terms s;_, and s}, such that s; — g,
* *
8i_1 —Roo Si—1, i —Reo 841 —Roo Sit+1, and 8i—1 “ Eoo 3§+1-
Proof The situation is illustrated in the following figure:
84
R, AN R,

¥ Reo N\ R
*
. L <o oot .
Si—1 E 81~ 5 > Siq1 E Sit+1
o0 o0 (o o]

Assume that the peak is due to a critical overlap of the rules | — r,g —» d €
R,,. Since there are no unmarked persistent rules, we know that there exist
rulesl — r1,g — dj € Ry such that

7.4 Huet’s completion procedure 181

1. I — r has been obtained from [— r; and ¢ — d has been obtained from
g — dj by repeated application of R-SIMPLIFY-RULE. Thus, we have
1 :+R°° r and dp l’Roo d.

2. Both [— r; and g — d; have been chosen to compute critical pairs.

If] - r; and g — d; are the same rule, then this rule was overlapped with
itself when computing critical pairs for it, and thus all critical pairs between
| — r; and g — d; are contained in E,. Otherwise, assume (without loss of
generality) that | — r; was chosen before g — dj. Thus, when critical pairs
for ¢ — di were computed, the set of rules contained a marked rule | — ro
that was obtained from [— r; by repeated application of R-SIMPLIFY-RULE,
and that was simplified afterwards to [— r. Consequently, all critical pairs
between | — ro and g — d; are contained in Eo,, and 3 g 7.

To sum up, we have seen that there exist rules | — r’,g — d’ € Ry, such
that ' Sg_ r, d g d, and all critical pairs between [— r’ and g — d’
are contained in E,. Using the same critical overlap between [and g as
in the peak s;_1 «g, $; —R, Si+1, but applying the rules | — r/,g — d’
instead of | — 7,9 — d, thus yields a peak s;_; <pr,, 8i =R, Si;1- Now,
8i_1 ©Eo Siy1 follows because the critical pair corresponding to this peak
is in Ew. In addition, 7' g r and & g, d imply s;_; g, s;i—1 and
Sé—l—l _*)Roo Si+1- O

Theorem 7.4.4 Assume that Huet’s procedure uses a strategy for choosing
unmarked rules to compute critical pairs that guarantees that there are mo
unmarked persistent rules. Then it is a correct completion procedure.

Proof If one again considers the correctness proof of the previous sec-
tion, then one observes that the only place where the fairness assumption
CP(R,) C E, comes into play is the last case in the proof of Lemma 7.3.4,
where two proof steps s;—1 <—g, Si =R, Si+1 that form a critical peak are
replaced by the smaller step s;—1 < g, Si+1. Lemma 7.4.3 yields terms s_;
and s, such that s;_1 <R, S|_1 “FEe Sit1 —Re Si+1 is a valid proof in
EwURy. Since s; > s;_; and s; > s;, 1, it is easy to see that the cost of each
proof step in this proof is lower than the cost of s; — g, s;+1. Thus, replacing
the peak Si—1 <R, 8i —R, Si+1 DY Sic1 €~ Rey Si_1 ©Ee Si41 —Reo Sit1
yields a smaller proof. O

Exercises

7.6 Let R be a finite and terminating TRS, and assume that, for all g —
d € R, d is a term such that d >g d. Show that there exists an

182

7.7

7.8

7.9

7.10

7.11

7 Completion

enumeration g1 — di,...,9n — d, of all rules in R such that, for
all ¢ = 1,...,n and R; := {git+1 — dit1,..-,9n — dn}, we have
d; i’Rz d;. (Hint: define the relation > on R by g —»d > ¢’ — d’ iff
g — d is used in the reduction d’ g d , and show that the transitive
closure of > is acyclic.)

Consider the following set of identities E:

{F(f(z,9),2) = f(z, f(y,2), f(z,2) = 2, f(f(z,y),2) = z}.

Choose an appropriate reduction order > and apply Huet’s completion
procedure to the input (E, >).
Consider the set of identities

E :={f(z,y) = h(z,c), f(z,y) = h(c,y), h(c,c) = c},

and the lexicographic path order >, that is induced by f > h > c.
Apply Huet’s completion procedure to the input (E, >,).
Consider the TRS

R:={f(z,y) — ¢, h(c,y) — ¢, h(z,c) — c}.

Show that R is confluent and equivalent to the set E of the previous
example, and that the order >, of the previous example can be used
to prove that R is terminating.

A TRS R is called interreduced iff the right-hand side r of each rule
Il — r € R is R-irreducible and the left-hand side [is irreducible w.r.t.
R—{l — r}. Show that the system R, generated by a non-failing run
of Huet’s completion procedure is interreduced.

Let G be a finite set of ground identities over ¥ and let > be a re-
duction order that is total on ground terms over ¥. Show that Huet’s
completion procedure terminates successfully if applied to the input
(G, >). Compare this result with Exercise 6.7.

7.5 Huet’s completion procedure in ML

This section brings together much of the functionality implemented in earlier
chapters: normalization w.r.t. a TRS (norm), critical pair computations
(CriticalPairs2), and orders. The ML-implementation of Huet’s completion
procedure follows the imperative algorithm in Fig. 7.5 quite closely. Hence
there is no need for detailed comments. The only real difference is that
instead of having marked and unmarked rules, two separate lists of rules are
maintained.
The outer while-loop is realized by the function compl

7.5 Huet’s completion procedure in ML 183

type ids = (term * term) list;

(*x complete: (term * term -> order) -> ids -> ids *)
fun complete ord E =
let fun compl(E,S,R) = case orient ord (E,S,R) of
([1,R) => R’
| (S’,R) => let val (7l,8”) = choose S’
val cps = CriticalPairs2 [rl]] R’ @
CriticalPairs2 R’ [rl] @
Critical Pairs2 [rl] [0
in compl(cps, S”,rl:: R’) end
in compl(E, [1,[]1) end;

(R contains the marked, S the unmarked rules) and the inner while-loop by
the function orient

(* orient: (term * term -> order) -> ids * ids * ids -> ids * ids *)
fun orient ord =
let fun ori([1,S,R) = (S,R)
| ori((s,t)::E,S,R) =
let val s’ = norm (R@S) s
val t’ = morm (RQS) t
in if s’ = t’ then ori(FE,S,R) else
if ord(s’,t)=GR then ori(addRule(s’,t’,E,S,R)) else
if ord(t’,s’)=GR then ori(addRule(t’,s’,E,S,R)) else raise FAIL
end
in ori end;

which orients each identity and raises

exception FAIL;

upon encountering a non-orientable identity. Function addRule performs
step (e) of the imperative algorithm. It adds a new rule to the set of un-
marked rules and uses it to simplify all other rules:

(* addRule: term * term * ids * ids * ids -> ids * ids * ids *)
fun addRule(l,r,E,S,R) =
let fun simpl([1,E’,R) = (E’,R’)
| simpl((g,d)::U,E’,U") =
let val g’ = norm [(l,M] g
in if g’ = g then let val d’ = norm ((l,7)::RQS) d
in simpl(U, E’, (g,d’)::U”) end
else simpl(U, (g’,d)::E, U
end
val (E’,S) = simpl(S,E,[1)
val (E”,R%) = simpl(R,E’,[1)
in (E”, (U, ::58’, R") end;

The choice of the next unmarked rule in compl is guided by the heuristic
that smaller rules are more helpful than larger ones because they have more
simplifying power. The size of a term is computed by size

(x size: term -> int *)
fun size(V _) =1
| size(T(_,ts)) = sizes ts + 1

and sizes [] =0
| sizes(t::ts) = size t + sizes ts;

184 7 Completion

and minRule splits a set of rules into one of least size and the remaining
rules:

(* minRule: (term * term) * int * ids * ids -> (term * term) * ids *)
fun minRule(rl,n, [1, R) = (rl,R)
| minRule(rl,n,,m::R,R) =
let val m = size | + size r
in if m < n then minRule((l,7),m,R,rl:: R
else minRule(rl,n,R,(l,7)::R’)
end;
The definition of choose, which is never called with an empty list, is obvious:

fun choose((l,7)::R) = minRule((l,7), size | + size r, R, [1);

This selection strategy is fair in the sense of Theorem 7.4.4 (see Exer-
cise 7.13).

Exercises

7.12 Apply complete to the following three axioms of group theory:
E:={(zxy)xzrmzx(y*xz2), i(z)xz~1, 1xz =z}

Find a suitable reduction order ord which leads to the following con-
vergent system:

(Z*xy)xz — zx(y*2), i) — 1,
lxz — =z, i(i(z)) — =,
zxl — =, ilzxy) — i(y)*i(x),
zxi(z) — 1, zx(i(z) xy) — v,
i(x)xx — 1, i(z)*(xxy) — v

What happens if you start with
E={(z*xy)xz~zx(y*2), zxi(z) =1, lxz~z}?

7.13 Show that choosing an unmarked rule of least size guarantees that
there are no unmarked persistent rules.

7.6 Bibliographic notes

Completion was introduced by Knuth and Bendix [145] as a tool for deciding
word problems in equational theories that are of interest in abstract algebra.
For this reason, completion as described in this chapter is often called Knuth-
Bendiz completion in the literature. The first complete proof of correctness
of a completion procedure that allows for simplification of rules was given
by Huet [120]. The description of completion procedures using inference

7.6 Bibliographic notes 185

rules, and the use of proof orders as a convenient tool for showing their
correctness, were introduced by Bachmair, Dershowitz, and Hsiang in [17],
and investigated in more detail by Bachmair in [14].

If applied to a finite set of ground identities together with a reduction order
that is total on ground terms, completion always terminates successfully. In
this case, the computation of critical pairs just amounts to reducing the left-
hand side of one rule by another rule (see Exercise 6.7). Efficient algorithms
for computing a finite convergent TRS that is equivalent to a given finite
set of ground identities are described in [93, 235].

We have seen that Huet’s procedure is not fair in the strict sense that
all critical pairs between persistent rules are computed. In the proof of its
correctness we have used the fact that it is sufficient to know that each of
these critical pairs has a proof that is smaller than the corresponding critical
peak. This observation can be used to prove correctness for more general
“critical pair criteria”, that is, criteria that describe which critical pairs are
redundant, and thus need not be computed [249, 151, 16, 251, 14].

Exercise 7.8 together with Exercise 7.9 demonstrates that a correct com-
pletion procedure (here Huet’s procedure) may fail for an input (E,>) even
though there exists a finite convergent TRS that is contained in > and
equivalent to E. This phenomenon is more thoroughly investigated in [77],
where it is also shown that there exist equational theories with decidable
word problem such that there does not exist an equivalent finite convergent
TRS.

If it does not fail on input (E,>), Huet’s procedure yields a convergent
TRS R, that is contained in >, equivalent to E, and interreduced (see
Exercise 7.10). Métivier [174] shows that interreduced convergent systems
are unique up to E and >, that is, if R; and R3 are interreduced convergent
systems such that ~g = ~g and R; C > (for : = 1,2), then R; and Ry are
equal up to variable renaming. This fact can be used to show that Huet’s
procedure terminates (successfully or with failure) on input (E,>) if there
exists a finite convergent system that is contained in > and equivalent to E
[77].

The completion procedures we have described above are parameterized
by a reduction order >, and they use this order throughout the completion
process. Failure of the procedure on input (E,>) may in some cases simply
be due to the fact that > is the wrong order. One might think that it is
admissible to change the order during completion, provided that the new
order contains the current set of rules. In [221] it is shown, however, that
this destroys correctness of completion, even in cases where the procedure
terminates without failure.

186 7 Completion

There are two extensions of rewriting and completion that try to cope with
the problem of non-orientable identities (see Chapter 11 for more details).
On the one hand, ordered rewriting and unfailing completion [18] depend
on a reduction order that is total on ground terms. Non-orientable iden-
tities do not lead to failure of the procedure. Like oriented rules, they are
used for computing critical pairs, but in both directions. On the other hand,
rewriting modulo equational theories takes some of the identities completely
out of the rewriting process. Conceptually, these identities define a congru-
ence relation on terms, and the remaining identities are used to rewrite the
congruence classes [203, 127]. Proof orders can also be employed to show
correctness of these extended completion procedures [14].

8
Grobner Bases and Buchberger’s Algorithm

We have seen in the previous chapter that in some cases completion gener-
ates a convergent term rewriting system for a given equational theory, and
that such a system can then be used to decide the word problem for this
equational theory. A very similar approach has independently been devel-
oped in the area of computer algebra, where Grobner bases are used to decide
the ideal congruence and the ideal membership problem in polynomial rings.
The close connection to rewriting is given by the fact that Grébner bases
define convergent reduction relations on polynomials, and that the ideal con-
gruence problem can be seen as a word problem. In addition, Buchberger’s
algorithm, which is very similar to the basic completion procedure presented
above, can be used to compute Grobner bases. In contrast to the situation
for term rewriting, however, termination of the reduction relation can always
be guaranteed, and Buchberger’s algorithm always terminates with success.
The purpose of this chapter is, on the one hand, to provide another exam-
ple for the usefulness of the rewriting and completion approach introduced
above. On the other hand, the basic definitions and results from the area
of Grébner bases are presented using the notations and results for abstract
reduction systems introduced in Chapter 2.

8.1 The ideal membership problem

Let us first introduce the basic algorithmic problems that can be solved with
the help of Grobner bases. We assume that the reader is familiar with the
elementary notions and definitions for polynomials. For this reason, they
will be presented in a rather informal way (strictly formal definition can, for
example, be found in [124]).

We consider the ring K[X;, ..., X,] of n-variate polynomials over K,
where n is a positive integer and K is an arbitrary field. The elements of

187

188 8 Grébner Bases and Buchberger’s Algorithm

K[X3,...,X,] are thus polynomials in the indeterminates Xy, ..., X, with
coefficients in K. For example, if n = 2 and K = Q, the field of rational
numbers, then f := 2X?X, — X1 X2+ 5X; + 17 is an element of K[X1, X»].
Addition “4+”and multiplication “” of polynomials are defined in the usual
way. We will often omit “-” when writing the multiplication of polynomials
or field elements.

Monomials in K[Xj, ..., X,] are of the form X{“l «oo Xk where Ky, . ..,
k, are non-negative integers. If k; = 0, then the indeterminate X; is usually
just left out. The monomial X?--- X2 is denoted by 1. The degree of the
monomial XI ... X% is the sum of its exponents, i.e. deg(XF ... Xkn) :=
ki + -+ + kn. The coefficient of a monomial in a polynomial f is the
element of K that “stands in front of this monomial” in the representation
of f. In a given polynomial, all but finitely many monomials have coefficient
0. Monomials with coefficient 0 are usual omitted when writing f. For this
reason, we say that a monomial occurs in f iff it has a non-zero coefficient
in f. For example, the monomials X7 X,, X1 X2, X1, 1 are all the monomials
occurring in the polynomial f := 2X? X, — X; X2+5X; +17. The monomial
X1X22 has coefficient —1, and the monomial 1 has coefficient 17.

One should note that this representation of polynomials as sums of mo-
nomials with coefficients assumes that after each operation (like addition,
multiplication) there is an implicit normalization step. Also, the indeter-
minates should not be confused with variables in terms. In the context of
Grébner bases, they rather play the réle of constant symbols. Thus, polyno-
mials are like ground terms, but considered modulo the ring axioms, which
are used to transform the polynomials into their representation as sums of
monomials with coefficients.

Definition 8.1.1 A nonempty set J C K[X1,...,X,] is an ideal of the
ring K[Xy,...,X,] iff it is closed under addition and under multiplication
with ring elements, i.e. it satisfies

1. f,g € J implies f +g € J,
2. feJand g€ K[Xy,...,Xy,] implies f-g € J.

The ideal generated by fi,..., fx € K[Xq,..., Xy] is the set

(fi,-- s f)={fi-on+ -+ fe-gr|91,...,9c € K[X1,..., Xn]}.

The ideal congruence =; induced by an ideal J is defined by f =; g iff
f—geJ.

It follows from this definition that any ideal contains the zero polynomial
0, and that the relation =; is a congruence relation on K[Xj,...,X,]. It

8.2 Polynomial reduction 189

is easy to see that the set (fi,..., fx) is in fact an ideal of K[X1,..., X,],
namely the smallest ideal of K[Xj,..., X,] that contains fi,..., fk.

The ideal membership problem is concerned with the following ques-
tion:

Instance: f, fi,..., fr € K[X1,...,X,]
Question: Is f € (f1,..., fx) satisfied?

Lemma 8.1.2 The ideal membership problem for J := (fi,..., fx) is decid-
able iff the ideal congruence =y is decidable.

Proof The direction from left to right is an immediate consequence of the
definition of =;. The other direction follows from the fact that f € J iff
f =J 0. (|

The question “f =; g?” corresponds to the word problem for equational
theories. It will be solved with the help of a convergent reduction relation
on polynomials.

Exercises
8.1 Let J be an ideal of K[Xy,...,X,]. Show that J contains the zero
polynomial, and that = is a congruence relation on K[Xj, ..., X,].

8.2 Let fi,..., frx € K[X1,...,Xy]. Show that (fi,..., fi) is the smallest
ideal of K[Xy,...,X,] that contains fi,..., fk.

8.2 Polynomial reduction

Our goal is to introduce a reduction relation on polynomials that is induced
by the polynomials f1,..., fi that generate the ideal J := (fi,..., fx). How
can a polynomial be used as a rewrite rule? The idea is to take the “largest”
monomial of the polynomial as the left-hand side, and the (negated) remain-
der of the polynomial as the right-hand side of the rule.

Example 8.2.1 Consider the polynomial f := X?X3 + X1X5 — 17. The
monomial X 12X2 is a “natural candidate” for the largest monomial since it
has the largest degree of all monomials occurring in f. Thus, f gives rise
to the rewrite rule X?Xs — —X1X3 + 17. Assume that we want to apply
this rule to the polynomial g := X?X2 + X; X2 — 3. The monomial X?X2
is a multiple of the left-hand side XX of the rule: X2X2 = (X?X3) - X,.
The rule X2X; — —X;X, + 17 is applied to g by replacing X?2X2 by the
corresponding multiple of the right-hand side. This yields the polynomial

190 8 Griobner Bases and Buchberger’s Algorithm

(=X1X2 +17X5) + X1 X2 — 3 = 17X5 — 3. Obviously, this rule application
corresponds to adding the multiple f - (—X3) of f to g.

Before we can define the reduction relation induced by a polynomial in
the general case, we must clarify with respect to which order the largest
monomial is chosen.

Definition 8.2.2 Let M, := {X¥ ... Xk» | (ky,...,k,) € N"} denote the
set of all monomials in K[Xy,...,X,]. A total order > on M, is called
admissible iff it satisfies

1. my | mg implies m; < mo,
2. my1 < mg implies m - m; < m - mo.

The notation “mj | my” stands for “m; divides my”, i.e. there exists a mono-
mial m such that m; - m = mgy. Obviously, m; := X{“ -+« Xkn is a divisor of
mg := X{‘ -+« X! iff the exponent tuples satisfy (ki,...,kn) < (I1,...,1n),
where < denotes the component-wise order on n-tuples of natural numbers,
ie. (ki,...,kn) <(l1,...,0pn) T ks <UL AN...NEkp <.

Lemma 8.2.3 Any admissible order > on M, is well-founded.

Proof The order > on natural numbers is obviously a well-partial-order,
and thus its component-wise extension to N” is also a well-partial-order, by
Lemma 5.4.5. Consequently, any order on M, that satisfies (1) of Defini-
tion 8.2.2 is well-founded, since it is an extension of a well-partial-order.

(|

Example 8.2.4 It is easy to see that the order > defined by X{“ o X
Xh... Xk iff

1. Z?:l ki > Z?:l li, or
2. Y k=1l and (k1,...,kp) >7, (lh,...,1ln)
is an admissible total order on M,,.

In the following, we assume that > is an arbitrary, but fixed, admissible
total order on M,,. Let f € K[Xi,...,X,] be a polynomial. The largest
monomial (with respect to >) occurring in f is denoted by H(f) (head
monomial), its coefficient is denoted by HC(f) (head coefficient), and
the remainder of the polynomial is R(f) := f — HC(f) - H(f).

When defining the reduction relation induced by a polynomial f, we may
(without loss of generality) restrict our attention to polynomials f with
HC(f) = 1. In fact, if f1,..., fx are non-zero polynomials, then we have
(f1,--+, f) = (HC(f1)~' - f1,...,HC(f1)~! - fx). In addition, the zero po-
lynomial can be removed from a given generating set without changing the

8.2 Polynomial reduction 191

ideal, unless all polynomials in the generating set are zero. Since the ideal
membership problem and the ideal congruence are trivially decidable for
the trivial ideal {0}, the degenerate case that all generating polynomials are
zero need not be considered here.

Definition 8.2.5 Let f be a polynomial with head coefficient 1, i.e. f =
H(f) + R(f). Then f induces the following reduction relation on poly-
nomials: g —¢ ¢’ iff

1. g contains a monomial m with coeflicient a # 0,

2. there exists a monomial m’ such that m = H(f) - m/, and
3.d=g—am-f.

If F:={f1,..., fx} is a finite set of polynomials with head coefficients 1,
then the reduction relation — induced by F is defined as follows:

k
—F = U ——)fz'
i=1
Before we can show that < coincides with the ideal congruence = for
J := (F), we need a technical lemma.

Lemma 8.2.6 Let f, 9,4, h be polynomials, m" a monomial, and b € K —
{0}, and assume that f has head coefficient 1.

1. f—¢0.

2. g —¢ ¢ implies bm” - g —5 bm” - ¢'.

3. g—yfg impliesh+g lfh+g.

Proof (1) The polynomial f can reduce its own head monomial m := H(f).
The coefficient of m in f is 1, and m = H(f)- 1. Thus, this reduction yields
the polynomial f —1- f =0.

(2) From the assumption g — ¢ g’ we can infer that g contains a monomial
m with coefficient a # 0, m = H(f) - m’ for a monomial m’/, and ¢ =
g—am/- f. Consequently, bm”-g contains the monomial m-m” with coefficient
a-b#0,m-m"=H(f) - (m'-m"), and bm” - ¢’ = bm” - g— (a-b)(m’-m")- f,
which shows that bm” - g —¢ bm” - ¢'.

(3) Assume that g — ¢/, and that the reduction is applied to a monomial
m with coefficient a # 0 in g. Let m/ be such that m = H(f)-m/. By
assumption, ¢’ = g — am’ - f. We distinguish three cases, depending on the
coefficient b of m in h.

Case 1: b= 0. In this case, h + g —f h + ¢’ obviously holds.

Case 2: ¢+ b =0, and thus b = —a. In this case, h+ ¢’ —¢ h+ g holds
because h+¢ —bm' - f=h+g—am’ - f —bm’/- f = h+ g. Note that the

192 8 Grobner Bases and Buchberger’s Algorithm

coefficient of m in h + ¢’ is b since the coefficient of m in ¢’ is 0. In the first
equation we have used the fact that ¢’ = ¢ — am/ - f and in the second that
b= —a.

Case 3: a+ b # 0 and b # 0. In this case,

h+g—f(h+g)—(a+bm'-f—sh+yg.

Note that the coefficient of m in h + g is a + b, and the coefficient of m in
h+g'is b. g

Theorem 8.2.7 If F := {fi1,..., fx} is a finite set of polynomials with head
coefficients 1, and J := (f1,..., fx), then =5 = Sp.

Proof (2) It is sufficient to show that —r C =j;. Thus, assume that g —, ¢
for some i,1 < ¢ < k. By definition, this means that there exist a € K and a
monomial m/ such that ¢’ = g —am’- f;. Consequently, g—g¢’' = am/- f; € J,
which shows that g =5 ¢'.

(C) Assume that f =j g, that is, f — g € J. Because J = (f1,..., fk),
this means that there exist polynomials g1,...,9x € K[Xi,...,Xn] such
that f — g = Ele gi - fi- If we decompose the polynomials g; into the
sums of their monomials and then apply the distributivity law, we obtain
ai,...,a € K, my,...,my € M,, and a mapping s : {1,...,1} — {1,...,k}
such that

!
F=g+> ajm;- fy;)

j=1

We prove f <p g by induction on .
The induction base (I = 0) is trivial since f = g obviously implies f < p g.
In the induction step, we define f’' := g + 23;11 a;jm; - fy(;), and assume
that f/ &p g is already proved. By (1) and (2) of Lemma 8.2.6, we have
aymy-foqy — 5, 0, and thus (3) of Lemma 8.2.6 yields f = f'+aimy-foq) Ly, f'-

Together with f' & g, this implies f &g g. O
Corollary 8.2.8 Let F := {f1,..., fx} be a finite set of polynomials with
head coefficients 1, and J := (f1,..., fx). If —=F is confluent and terminat-

ing, then =y is decidable.
Proof Analogous to the proof of Theorem 4.1.1. a

The reduction relation — is always terminating, but it need not be con-
fluent.

Proposition 8.2.9 Let F' be a finite set of polynomials whose head coeffi-
cients are equal to 1. Then —F is a terminating reduction relation.

8.3 Grobner bases 193

Proof With each polynomial f € K[Xq,..., X,] we associate the set M(f) of
monomials occurring in f, and we compare these sets with the multiset order
=mw induced by the admissible order > on M,. Since > is well-founded,
>mul is also well-founded. Thus, it is sufficient to show that ¢ — ¢’ implies
M(g) =mu M(g").-

Assume that g —f ¢’ for a polynomial f = H(f) + R(f) € F. Thus,
the polynomial g contains a monomial m with coefficient a # 0, there exists
a monomial m’ such that m = H(f)-m/, and ¢ = g — am’ - f. Since
> is admissible and H(f) is the largest monomial in f, all monomials in
am’ - R(f) are smaller than m = H(f) - m’. Thus, M(¢) is obtained from
M(g) by replacing the monomial m by smaller monomials, which implies
that M(g) =mu M(g'). O

Example 8.2.10 Let F := {X?X; — X?, X1 X2 — X2}, and > be the ad-
missible order introduced in Example 8.2.4. The head monomial of f; :=
Xsz —X?is X?2X, and the head monomial of f5 := X1X§ - X% is X1 X3
It is easy to see that X? 5 X2Xo «f X2X2 —¢, X1X3 —y, X3. Since
X? # X2 and both polynomials are —p irreducible, this shows that — is
not confluent.

Exercises

8.3 Let > be a well-founded total order on M,. Show that under this
assumption (2) of Definition 8.2.2 implies (1).

8.4 Show that the binary relation on M, introduced in Example 8.2.4 is
a total admissible order on M,,.

8.3 Grobner bases

Corollary 8.2.8 and Proposition 8.2.9 show that the ideal congruence prob-
lem for a given ideal J is decidable, if J is generated by a finite set G of
polynomials that induces a confluent reduction relation —¢. This motivates
the following definition.

Definition 8.3.1 Let G := {fi,..., fx} be a finite set of polynomials
with head coefficients 1. Then G is a Grobner basis of the ideal J iff
J={f1,..., fx) and —¢ is confluent.

We have seen in Example 8.2.10 that not every finite generating set of an
ideal is a Grobner basis of that ideal. Similarly as in the case of term
rewriting systems, confluence of polynomial reductions can be decided by

194 8 Grébner Bases and Buchberger’s Algorithm

considering finitely many “critical situations”. For polynomial reductions,
these critical situations give rise to S-polynomials:

Definition 8.3.2 Let f; = H(f;) + R(f;) and f; = H(f;) + R(f;) be
polynomials with head coefficients 1, let m := lem(H(f;), H(f;)) be the
least common multiple of the head monomials of f; and f;, and let m;, m;
be monomials such that m; - H(f;) = m = m; - H(f;). The S-polynomial
induced by the polynomials f;, f; is defined as S(f;, f;) :==m; - fi — m; - f;.

Note that, for monomials m; := X{“l oo XFEn and mg := X{l .- X!n the least
common multiple is lem(my, mg) = X7* - -- Xi», where r; := max(k;, l;) (for
i=1,...,n).

For example, the polynomials X2X, — X%, X1 X2 — X2 of Example 8.2.10
induce the S-polynomial X1X2 — X2 X,.

The S-polynomial S(f;, f;) corresponds to the following critical overlap
between an application of —, and one of —,:

m —m;- fi —g5 m —g m—m;- f;.

Thus, instead of considering the “critical pair” (m —m; - f;, m —m; - f;), we
consider the difference between the two polynomials in this pair: S(f;, f;) =
m—m;- fj —(m—m;- f;). If an S-polynomial reduces to 0, then the corres-
ponding critical situation is confluent. This is an immediate consequence of
the next lemma.

Lemma 8.3.3 f — g 5 0 implies f | g.

Proof by induction on the length of the reduction sequence. If f — g = 0,
then f = g and f | g trivially holds. For the induction step, assume that
f—g9g—5h 27 0 for a polynomial f; € F. Assume that the reduction is
applied to the monomial m in f — g, let m’ be such that m = H(f;) - m/,
and let a be the coefficient of m in f and b the coefficient of m in g. Thus,
a—b # 0 since it is the coefficient of m in f—g, and h = (f—g)—(a—b)m/’- f;.

Depending on whether a, b are zero or not, we have the following zero- or
one-step reductions:

fop f—am'-f; and g Sy g—bm' - fi.

Since h = (f — am’ - f;) — (g — bm/ - f;), the induction hypothesis yields
f—am'-filpg—bm'-f. O

The following theorem states that the S-polynomials really capture all the
critical overlaps.

8.8 Grobner bases 195

Theorem 8.3.4 Let G := {f1,..., fx} be a finite set of polynomials with
head coefficients 1. Then G is a Gréobner basis of (f1,..., fx) iff all S-
polynomials induced by the polynomials in G reduce to 0.

Proof To show the =--direction, assume that —¢ is confluent, and thus
also Church-Rosser by Theorem 2.1.5. Obviously, the definition of the S-
polynomlal f = S(fi, f;) implies that f € J, and thus f =; 0. Since
=; = &¢ and —¢ is Church-Rosser, this 1mp11es that f |¢ 0. Because 0 is
obviously —g-irreducible, f |g 0 yields f ¢ 0.

Since —¢ is terminating, the <-direction of the theorem can be shown
by proving that —¢ is locally confluent. For this purpose we look at the
following critical situation:

f
fi i
g/ N

Case 1: the reductions are applied to different monomials in f. Assume
that —y, is applied to the monomial m; with coefficient a in f, and that
—, is applied to the monomial mg with coefficient b in f, where my # ma.
Thus, we have the following situation:

e f = fi +amy + bmgy, where f; is a polynomial in which neither m;
nor Mmsy OCCurs.
o There exist monomials m;, m; such that m; = H (fi) - m; and mg =
H(f;)-m
e g=f—am;- fi= f1 —am;- R(f;) + bmy, and
® h=f—bmj-fj=f1+am1 —bmJR(fJ)
Without loss of generality, we assume that m; > mg. Thus m; > mo =
H(f;) - m; implies that m; is larger than all the monomials occurring in
bmj - R(f;). For this reason, the polynomial h contains the monomial m;
with coefficient a, which shows that the reduction h —; h — am; - f; is
possible. In addition, f —¢ h yields

g=f+(—am;- f;) lFr h+ (—am; - f;) = h—am; - f;,

by Lemma 8.2.6. Thus, we have shown that g and h are joinable.
Case 2: the reductions are applied to the same monomial in f. Thus, we
have the following situation:

e f = f1+ amj, where f is a polynomial in which m; does not occur.
e There exist monomials m;, m; such that H(f;)-m; = my = H(f;)-m;.
e g=f—am;- fand h = f —am; - f;.

196 8 Grébner Bases and Buchberger’s Algorithm

Since both H(f;) and H(f;) divide m;, their least common multiple m :=
lem(H(f;), H(f;)) divides m; as well. Thus, there exists a monomial m’ such
that m; = m-m'. If m, m; denote the monomials such that H(f;)-m] =
m = H(f;) - mj, then S(fi, f;) = mj- fi — m}; - f;. Note that H(f;)-m; =
my = m-m' = H(f;) - m}-m' implies that m; = m/ - m/. The equality

m; = m} -m' can be shown similarly.

By assumption, S(f;, fj) —¢ 0, which implies am’ - S(f,, f;) —¢ 0 by
Lemma 8.2.6. Since am’- S(fi, f;) = am’ -mj - f; —am’ -m/; - f; = am; - f; —
am; - f; = h — g, we thus know that h— g %6 0. By applying Lemma 8.3.3,
we finally obtain h |g g. a

In Example 8.2.10, the S-polynomial X; X2 — X?X, reduces to the irredu-
cible polynomial X2 — X? # 0, which shows that F is not a Grébner ba-
sis. Similar to the idea underlying completion, namely adding appropriately
oriented non-confluent critical pairs to the term rewriting system, Buchber-
ger’s algorithm extends the set of polynomials by those S-polynomials that
do not reduce to 0. For example, if X2 — X? is added to F, then the S-
polynomial X1X2 — X2 X5 reduces to 0. However, one must now compute
new S-polynomials between the polynomials in F' and the new polynomial.

8.4 Buchberger’s algorithm

The goal of this algorithm, which is described in Fig. 8.1, is to transform
a finite generating set F' := {fi,..., fx} of an ideal J into a Grdbner basis
for J. As mentioned above, this is achieved by computing S-polynomials
and by extending F' by those S-polynomials that do not reduce to 0 (more
precisely, F is extended by the corresponding irreducible polynomials). Since
S(f,f) = 0 by definition, it is not necessary to compute an S-polynomial
between a polynomial and itself. In addition, S(f,g9) = —S(g, f) implies
that S(f,g) reduces to 0 iff S(g, f) reduces to 0. Thus, it is sufficient to
compute only one of the two S-polynomials.

Theorem 8.4.1 Buchberger’s algorithm terminates for every finite input
set F :={f1,..., fx}, and it yields a Grobner basis of J := (f1,..., fx) as
output.

Proof First, note that in every step of the algorithm (G;) = J is satisfied.
This is an easy consequence of the following two facts:

o If f;, f; € J, then S(fi, f;) € J.
o I S(fi, f;) € J = (Gi) and S(fi, ;) G, h, then HO(R)™ - h € J.

8.4 Buchberger’s algorithm 197

Input:
A finite set F := {f1,..., fx} of polynomials in K[Xq,...,X,]| with
head coefficients 1 and an admissible order > on M,,.

Output:
A finite set G, of polynomials in K[Xj, ..., X,] that is a Grobner basis
of J := <f1a"'1fk>'

Initialization:
i:=0; Go:=F;

Bo:={(fi, ;) |1 <i<j <k}

while B; #0 do
(a) Choose a pair (fi, fr) € By;
(b) Compute the S-polynomial S(fi, fr);
(c) Compute a —¢,-normal form h of S(fi, fr);
(d) If h # 0, then
Biy1 = (Bi — {(fz,fr)} YU{(f, HC(h)™* - h) | f € Gi};
Giy1:=G; U {HC(h)~* - h};
i=14+1
(e) Otherwise, B,-+1 =B; —{(fi, fr)}; Gi+1: =G5 i =i+ 1;
od

Output Gj;

Fig. 8.1. Buchberger’s algorithm.

Thus, if the algorithm terminates with output G;, then J = (G;).

The output set G; is a Groébner basis since all its S-polynomials reduce
to 0. In fact, if f,g € G;, then at some step j of the computation one of
the S-polynomials S(f, g) or S(g, f) was computed. Assume without loss of
generality that S(f,g) was computed. If S(f,g) —t»G] 0, then S(f,9) =g,
0 since G; € G;. Otherwise, S(f,g) LGJ h and HC(h)™! - h € Gj1.
Since HC(h)™! - h can be used to reduce h to 0 in one step, this implies
S(f,9) a4, 0, and thus S(f, g) =g, 0.

In order to show termination of the algorithm, assume to the contrary
that it does not terminate. It is easy to see that this implies that infini-
tely many new polynomials are added in (d). Let hi, hg, hs, ... be the list
of these polynomials, in the order in which they are added. Consider the
sequence H(h1), H(hg), H(h3),... of their head monomials. Since the divi-
sibility relation on monomials coincides with the component-wise order on
their exponent tuples, and since this component-wise order on tuples of na-
tural numbers is a well-partial-order (see proof of Lemma 8.2.3), there exist

198 8 Grébner Bases and Buchberger’s Algorithm

indices 1 < 4 < j such that H(h;) | H(h;). Consequently, h; can be used
to reduce h;. This is a contradiction, since the polynomials added in step
(d) of the algorithm are irreducible with respect to the polynomials that are
contained in the current set of polynomials, and this set contains h;. a

For the sake of simplicity, we have presented a version of Buchberger’s al-
gorithm that is very similar to the basic completion procedure described in
Section 7.1. As with completion, the efficiency of Buchberger’s algorithm
can be improved by simplifying old polynomials with the help of the newly
generated ones. In addition, the use of appropriate “critical pair criteria”
that avoid the computation of redundant S-polynomials is important. We
have shown that Buchberger’s algorithm terminates for all finite input sets F’
and admissible orders >, but the run time of the algorithm strongly depends
on which admissible order is used. Thus, appropriate criteria for choosing
the “right” admissible order are also important.

Exercises

8.5 Let G be a finite set of polynomials with head coefficients 1, and let
J := (G) be the ideal generated by G. Show the following:

e If f,g € G, then S(f,g) € J.
o If fe Jand f 5g h, then h € J.

8.6 Apply Buchberger’s algorithm to F := {X?X, — X?, X1 X2 — X2}.

8.5 Bibliographic notes

Groébner bases and an algorithm for computing them were developed in 1965
in B. Buchberger’s Ph.D. thesis [36, 37], but were then almost forgotten for
more than a decade. In 1976, research on this topic was resumed by Buch-
berger and many others, leading to a more thorough analysis of the method
(see e.g., [39, 38, 15]), several generalizations (e.g. to polynomials over cer-
tain rings [131, 238]), and applications in various areas of mathematics and
computer algebra (see [40, 43| for an overview of the results and applicati-
ons). In [39], Buchberger introduced the name “Grobner basis” in honour
of his thesis adviser W. Grobner, who stimulated his research on this topic,
and had some initial ideas on how to attack the problem [101]. Later on, it
turned out that Grobner bases had already been introduced under the name
“standard bases” by H. Hironaka [114], but their existence for an arbitrary
finitely generated ideal was proved in a non-constructive way, that is, [114]
does not describe an algorithm for computing standard bases.

8.5 Bibliographic notes 199

The connection between Buchberger’s algorithm and the critical pair/com-
pletion approach in term rewriting was first observed in [161, 44], and more
closely analysed in [41, 42]. This connection has, for example, been used to
translate criteria for avoiding the computation of redundant S-polynomials
into critical pair criteria for completion of term rewriting systems [249, 151].
There are several works that describe completion of term rewriting sys-
tems and Buchberger’s algorithm in a common framework, or try to present
Buchberger’s algorithm as a special case of completion of generalized term
rewriting systems [248, 48, 132, 45, 19].

The proofs of some of the technical lemmas in this chapter have been
derived from [39, 15]. Two recent books on the topic are [247, 2].

9

Combination Problems

We have seen that properties like termination and confluence are in gen-
eral undecidable and require sophisticated technology to solve interesting
subclasses. Because the likelihood that a given TRS can be treated with
a particular method decreases with the size of the TRS, it is desirable to
modularize tests for confluence and termination. For example, the system
R :={f(z,z) — =, a — g(a)} cannot be shown to be confluent by any of
the methods of Chapter 6 because R is neither left-linear nor terminating.
However, Ry := {f(z,xz) — z} is terminating, has no critical pairs and is
therefore confluent. Similarly, R; := {a — g(a)} is orthogonal and thus also
confluent. Wouldn’t it be nice if we could conclude that R = Ry U R; must
therefore also be confluent? A famous theorem by Toyama, which started
the whole field of combination problems for term rewriting systems, asserts
that this is the case because Ry and R; do not share function symbols. This
chapter studies under what conditions we can transfer confluence and/or
termination from individual systems to their union.

Computer scientists want to combine not just properties but also algo-
rithms. Hence the final substantive section in this chapter is devoted to one
particularly well-behaved instance, that of combining decision procedures
for the word problem: given decision procedures for ~g, and ~g,, how can
we decide ~g,ug,? Of course, for arbitrary Ey and E; this is not possible,
but if they do not share function symbols, it is.

9.1 Basic notions

It is obvious that the less interaction there is between two term rewriting
systems Ry and Rj, the easier combination problems become. Although
most of the time we restrict ourselves to the case where Ry and R; do not
share function symbols, the problems are still far from trivial.

200

9.1 Basic notions 201
Definition 9.1.1 A property P of term rewriting systems is modular if
P(RyUR;) & P(Ro) A P(Ry)

holds for all Ry and R; over disjoint signatures ¥o and ¥;. If ¥y and ¥,
are disjoint, Ry U R; is called the disjoint union of Ry and R;.

In the sequel let Ry and R; be two arbitrary but fixed term rewriting systems
over the signatures ¥y and ¥;. Unless stated otherwise, we assume that g
and ¥; are disjoint. Furthermore we define R := Ro U R1, ¥ := Xp U X,
— = —pand —j := —pg, (k=0,1). Note that 1 — k is the “complement”
of k if k € {0,1}.

Of course modularity can be iterated: if P is modular then

P(RyU...UR,) & P(Ro)A...ANP(Ry)

holds for all Ry, ..., R, over pairwise disjoint signatures X, ..., %,.

In order to talk about terms consisting of a mixture of function symbols
from different signatures, it helps to introduce a suggestive notation for
separating such terms into homogeneous layers.

Definition 9.1.2 Let O be a new symbol which does not yet occur in
Yy UV. A Xy-context is a term ¢ € T'(X;,V U {0O}) and can be seen as a
term with “holes”, represented by O, in it. Contexts are denoted by C. If
{p1,...,pn} = {p € Pos(C) | C|p = O}, where p; is to the left of p; ;1 in the
tree representation of C, then C(t1,...,tn) 1= Clt1]p, - - - [tnlp,-

Unless stated otherwise, a term will be an element of T'(X, V). A term s
is called pure if s € T'(Xg, V) for some k. The root symbol of a term s is
abbreviated by root(s).

Given a term s, we write s = C[sy,...,s,] if s = C(s1,...,8,) and

1. C # O is a Yg-context for some k, and

2. root(s;) € ¥y fori=1,...,n.
Note that C and the s; are uniquely determined by s. The s; are called the
alien subterms of s.

The rank of a term is the maximal number of signature changes along
any of its branches:

0 if ¢ is pure,
1+ maz{rank(s1),...,rank(s,)} ift=Cls1,...,sn],n > 1.

rank(t) := {

For compactness we also write C(t,,) and C[s,]. Note that C(t1,...,t,) and
Cls1,...,8n] allows for n = 0, in which case the degenerate context C' is
simply an element of T'(3, V).

202 9 Combination Problems

9.2 Termination

We start with a simple exercise in modularity. Recall that a reduction
relation is normalizing if every element has a normal form. Let us call this
the normalization property. The following diagrammatic example indicates
that the normalization property is modular because the normal form of a
term can be found by a bottom-up strategy:

A

The black and white triangles represent pure terms over different signatures.
In the first step, the three small triangles are normalized. The black one
on the left merely changes it shape, whereas the black one on the right
disappears, which means that some rule of the form ! — x must have been
used. In the resulting term, the small black and white triangles are in
normal form. Because the small and the big white triangles are of the same
signature, they can be combined into a single white term with a single black
subterm, which is still in normal form. This is not a rewrite step but merely
adjusts the layout. The final step represents the normalization of the white
top layer of the term. The key point here is that the black subterm can be
duplicated but it cannot change its shape, i.e. it remains in normal form.

Theorem 9.2.1 The normalization property is modular.

Proof First assume that R is normalizing. To see that the R-normal form
of a ¥p-term is also an Ri-normal form we look at an R-reduction sequence
starting with a Y-term:

1. Only Rg-rules are applicable to a Xj-term because ¥y and X; are disjoint
and the lhs of a rewrite rule cannot be a variable.

2. Hence all intermediate terms in the sequence must also be ¥-terms and
all rules used in the reduction must be Rg-rules.

Therefore Ry and R; are normalizing as well.

Now assume that Ry and R; are normalizing and let s be a ¥-term. We
show by induction on the rank of s that s has an R-normal form. Let
s = C[s;,] where C is a Xi-context. By induction hypothesis each s; has
an R-normal form t;. Let C(¢,) = C’[u,] for suitable C’ and u;. Let
{z1,...,2,} be a set of new variables such that z; = z; & u; = u;. Since
Ry, is normalizing, C'(Z,) has an Rg-normal form ¢, which is also an R-
normal form. Thus we have s = C(%,) = o(C'(T,)) — ot where 0 =

9.2 Termination 203

{z1 — w1,...}. It is easy to see that ot is in R-normal because ¢ and the
oz; are in R-normal form, z; = z; < ox; = ox;, and because t € T'(XZg, V)
but root(ui) € X1k O

It is very tempting to assume the same is true for termination. However ...
Example 9.2.2 (Toyama [242]) Termination is not modular.

Ry = {g(fl/',y) — X, g(xay) - y}
Both Ry and R; terminate, but R does not:

s0 = £(9(0,1),9(0,1),9(0,1)) 5 £(0,1,9(0,1)) — 5o — -

Termination of R; is obvious, termination of Ry can be established with the
following measure function into multisets of natural numbers:

o(t) := { maz{length of ¢ | ¢ € Pos(t|p)} | p € Pos(t) A3s. t|, = £(0,1,s)}.

It turns out that this counterexample is typical in the sense that one system
contains a duplicating, the other a collapsing rule:

Definition 9.2.3 A rule ! — r is collapsing if r is a variable and dupli-
cating if some variable occurs more often in r than in /.

The main theorem provides three sufficient conditions for the preservation
of termination:

Theorem 9.2.4 The disjoint union of two terminating systems terminates
if

e neither system contains collapsing rules, or

o neither system contains duplicating rules, or

e one of the systems contains neither collapsing nor duplicating rules.

Its proof is a beautiful demonstration of the standard tools for combination
problems, some of which still need to be introduced:

Definition 9.2.5 A reduction s — ¢ is called inner, and we write s » t,
if it takes place in one of the alien subterms of s; otherwise it is called an
outer reduction and we write s > t. Obviously, pure terms give rise only to
outer reductions.

A step s — t is called collapsing at level

0 if root(s) € T but root(t) & T,

i+1 if s=0Cls1,...,85,...,8n], t =C(s1,...,tj,...,8yn) for some j,
and s; — t; is collapsing at level .

204 9 Combination Problems

Note that by definition any step s — z is collapsing at level 0. Note further
that not every application of a collapsing rule gives rise to a collapsing step.
For example, if Ry = {f(z) — z} then f(f(z)) —o f(z) is not a collapsing
step. In contrast, we call a step duplicating if it uses a duplicating rule.

Lemma 9.2.6 s —t = rank(s) > rank(t).

Proof by induction on the rank of s. Let s = C|s1,...,8,]. If s » ¢ then
rank(s) > rank(t) follows by induction hypothesis. If s I> ¢ then either
t = s; for some 4, and hence rank(s) > rank(t), or t = C'[u1,. .., un] such
that {@,} C {s»}, and hence rank(s) > rank(t). a

For multiset-order purposes we define

S(Cls1y...,8n]) :={81,---,8n},

the multiset of alien subterms of a term. The following two lemmas are easy
to prove:

Lemma 9.2.7 If s > t is neither collapsing nor duplicating then S(s) 2
S(t).

Lemma 9.2.8 If s = Cls1,...,8j,...,8s) » C(S1,-.-,tj,...,8,) = t 18
collapsing at level 1, then S(t) = (S(s) — {s;}) US(t;).

The following lemma is the key to a compact proof of our main theorem:

Lemma 9.2.9 (Ohlebusch [193]) If Ry and R; are terminating but R is not,
then there is an infinite R-reduction which contains

1. no collapsing step at level 0,

2. an infinite number of outer steps,

3. an infinite number of collapsing steps at level 1, and
4. an infinite number of outer duplicating steps.

Proof Define the rank of an infinite reduction sequence sg — s; — --- as
the minimal rank of all the s;. Let M be the set of all infinite sequences
80 — 81 — --- of minimal rank (i.e. there is no infinite reduction sequence
of smaller rank) such that rank(s;) = rank(s;y1) for all i. To see that M
is nonempty, take an arbitrary infinite reduction sequence of minimal rank
and observe that by Lemma 9.2.6 the rank of its elements cannot increase.
Since the rank is bounded below by 0, it must become constant from some
point on. Therefore the suffix starting at that point is an element of M.
(0) Observe that any suffix of a sequence in M is also in M. If we can
show that each D € M contains an occurrence of a particular step, then so

9.2 Termination 205

does each suffix of D, in which case each D must contain an infinite number
of such steps.

Now let D be some arbitrary sequence sg — s;1 — --- in M. We prove
that D fulfils conditions 14 above.

(1) Since rank(s;) is constant, there can be no collapsing step at level 0.

For the remaining three conditions note that observation (0) above reduces
our obligations to showing that there is one step of each kind. In each case
the proof is by contradiction.

(2) Suppose there is no outer step in D. Hence D is of the form C[t,] »
C(u,)» C(...)» -+ where t; — u; — --- for i = 1,...,n. This gives rise
to an infinite reduction starting with some ¢;. But this reduction sequence
is of smaller rank than D, a contradiction.

(3) Suppose D contains no collapsing step at level 1. Then all steps in D
are either of the form CJ...] » C]|..], or of the form C|[...] > C'[...] such
that Clz,...,z] —; C'lz,...,z]. Note that replacing all alien subterms
of C|...] by the same variable z cannot disable the rule used in the step
CJ...] > C"[...]. And because all variables on the rhs of a rewrite rule must
also occur on the lhs, the alien subterms of C’[. ..] must be a subset of those
of C|...], which is why we may also replace C'[...] by C’[z,...,z].

Because there are infinitely many outer steps, this gives rise to an infinite
Ry-reduction sequence Clz,...,z] —¢ C'lz,...,z] = C"[z,...,x] = - -,
contradicting termination of Ry.

(4) Suppose D contains no outer duplicating step. Define the complexity
of a term ¢ as the multiset

K(t) :={rank(s) | s € S(¢t)}

and recall that >,,,; is the reflexive closure of >,,,;, where in the current
context > has its usual interpretation on N. We analyse how K (s;) develops,
depending on the form of the step s; — s;y1:

Outer: Then S(s;) 2 S(siy1) by Lemma 9.2.7 because outer steps are
neither collapsing nor duplicating. This implies K (8;) >mu K(Siv1)-

Inner, non-collapsing at level 1: s; = C[t1,...,tj,...,ts], t; — t; and
sit1 = Clt1,...,t},...,tn]. Then rank(t;) > rank(t;) and hence
K(Sz) >mul K(8i41)-

Inner, collapsing at level 1: s; = C[t1,...,tj,...,tn], t; — t; and si41 =
C(t1,-.-,tj,-.-,tn). Then Lemma 9.2.8 implies S(siy1) = (8(si) —
{t;}) U S(t;). Because rank(t;) > rank(u) for every u € S(t;) we
obtain K(Sz) >mul K(si-{—l)'

206 9 Combination Problems

Because >,y is well-founded, there can only be finitely many steps in D
which are collapsing at level 1, a contradiction to (3). O

Now note that because the infinite R-reduction has no outer collapsing steps,
all outer steps are Rg-steps and all steps at level 1 are R;_-steps for a fixed
k. Hence Ry is duplicating and R;_j collapsing:

Corollary 9.2.10 If the disjoint union of two terminating systems fails to
terminate, then one of the two systems must contain a collapsing and the
other one a duplicating rule.

Because this corollary is the contrapositive of Theorem 9.2.4, we have also
proved the latter.

Although it may seem that we have completely characterized the cases
where termination is modular, this is not quite true: the union of a duplica-
ting with a collapsing system may but need not result in nontermination. For
example, both Ro := {fi(z) — fa(z,7)} and R; := {g(z,y) — =, g(z,y) —
y} are terminating, and so is Ry U R; (exercise: why?). This shows that
when combining two terminating systems, one duplicating and the other
one collapsing, proving termination of the union can be nontrivial. This is
hardly surprising in view of the fact that termination of the disjoint union
of terminating systems is undecidable [176].

For the benefit of those readers who are still a bit bemused by the non-
modularity of termination, it should be mentioned that termination is modu-
lar for graph-based non-copying implementations of rewriting where multiple
occurrences of the same variable on the rhs of a rule are shared. Under this
interpretation, the standard counterexample 9.2.2 vanishes into thin air:

2
ENORONORENONN G
& b

The intuitive reason is quite simple: non-copying reduction essentially means
that there are no duplicating rules, in which case we know that termination
is modular. This phenomenon was discovered by Plump [206] and refined
by Kurihara and Ohuchi [153], who also proved that termination is modular
for systems whose termination can be shown by a simplification order [152].

9.3 Confluence 207

Exercise

9.1 Show directly, i.e. without appealing to any of the theorems above,
that if R is a non-duplicating TRS over the signature X, then R is
terminating iff R U {g(z,y) — =z, g(z,y) — y}, where g ¢ %, is
terminating (Gramlich [98]).

9.3 Confluence

The detailed treatment of modularity of confluence for disjoint unions is
beyond the scope of this book. Hence the following subsection merely states
the important results and refers the interested reader to the literature for
proofs. The subsequent subsection replaces the disjointness requirement
by orthogonality. Although the resulting theorems are just as useful, their
proofs are far simpler.

9.3.1 The disjoint case
Theorem 9.3.1 (Toyama [243, 143]) Confluence is a modular property.

One particularly simple consequence of this theorem is that a confluent TRS
over a signature Xy is confluent not just for T'(Xg, V) but also for (X', V)
for every ¥/ D Xy. (Why?)

Looking back at Example 9.2.2, the counterexample to modularity of ter-
mination, and noticing that R; is not confluent, it is tempting to conjecture
that convergence could be modular. However, this is not true either:

Example 9.3.2 (Drosten [82])
Ro = {f(0,1,2) f(z,5,3), f(5,4,2) =2, 02, 152},
Ry := {g(xa Y, y) - T, g(xaxay) - y}

Both Ry and R; are convergent, but R does not terminate: if ¢ = ¢(0,1,1)
then

f(tatat) - f(O,t,t) i f(Oag(2a2a 1)1t) - f(oalat) - f(tatat) .
If we also require left-linearity, we finally arrive at

Theorem 9.3.3 Convergence is modular for left-linear systems.

This was first proved by Toyama, Klop and Barendregt [245]. A much
simplified proof is due to Schmidt-Schau, Marchiori and Panitz [225].

208 9 Combination Problems

9.3.2 The orthogonal case

In this subsection the key property in the study of modularity of conflu-
ence is commutation (see Subsection 2.7.1). Recall the Commutative Union
Lemma, which, when translated to term rewriting, says that

Ro U Ry is confluent if Ry and Ry are confluent and commute.

Note that there are no disjointness requirements. Hence ¥y and ¥; can be
arbitrary signatures in the remainder of this section. We now concentrate
our efforts on commutation, obtaining confluence as a corollary.

Definition 9.3.4 We call Ry and R; mutually orthogonal if they are
left-linear and no rule of Ry overlaps with a rule of R;.

Remember that “overlaps” is a symmetric notion.
The remainder of this section is concerned with proving

Theorem 9.3.5 Mutually orthogonal term rewriting systems commudte.
Using the Commutative Union Lemma we immediately obtain

Corollary 9.3.6 If Ry and Ry are confluent and mutually orthogonal, then
Ry U Ry is confluent.

Example 9.3.7 Suppose Ry := {f(f(z,y),2) — f(z, f(y,2))} and R; :=
{9(z) — f(z,g(x))}. Both systems are confluent (Ry is terminating and its
critical pair is joinable, R; is orthogonal) and they are mutually orthogonal.
Hence Ry U R; is confluent.

However, none of the theorems in the confluence chapter can deal with
Ry U R;: it is not terminating (hence the Critical Pair Theorem does not
apply), not linear (hence the Strong Confluence Lemma does not apply) and
not parallel closed.

Now we develop an elementary proof of Theorem 9.3.5 which relies not on
positions or contexts but merely on the inductive nature of terms. The main
idea of this proof is the same as in our previous encounter with orthogona-
lity: parallel reduction. This time, however, we use the following inductive
definition:

Definition 9.3.8 Let R be a TRS. The relation =g is the smallest relation

which satisfies the following rules:

(l—*T)ER B s1=3pt1 ... Sp3Rrt, ©)
ol 33por f(sl,...,sn) =R f(t,. .-y tn)

The relation =3 extends to substitutions in the pointwise way: if W is a

set of variables, o :&Y o’ means ox 3gp o'z forallz € W.

s3s (A)

9.8 Confluence 209

It is easy to see that this definition of =y is equivalent to the original one.
The following lemma can easily be proved by induction on ¢:

Lemma 9.3.9 If 0 =¥ o’ and Var(t) C W then ot =g o't.

The next lemma is quite simple, although a bit technical. It generalizes the
Parallel Moves Lemma:

Lemma 9.3.10 Let ! be a linear term such that no non-variable subterm of
I unifies with a renamed lhs of a rule in R. Then ol =g s implies that there

is a o’ such that o ‘_"s;ar(l) a’, s =o'l and Dom(d’) C Var(l):

LN LN

Proof by induction on [. The base case | € V is trivial: ¢’ := {l — s}. For
the induction step we assume ! = f(I,,) and distinguish according to which
rule was used in the last step of the derivation of ol =5 s:

(A) Because s = al, 0/ :== {z — oz | x € Var(l)} does the job.

(B) By assumption, the case ol = o3l for some (l2 — r2) € R cannot arise
because it would mean that | and a renamed version of [y are unifiable.

(C) In this case ol = f(ol,), s = f(3n) and ol; =g s;. Because each I;
is a subterm of [, it satisfies the assumptions about [. Therefore the
induction hypothesis applies and there are o; such that o :tzm(ll) a;,
oili = s; and Dom(o;) C Var(l;). Define o’ := |J; 0;. Because [is
linear, the variables in the different subterms I; are disjoint and hence
o’ is well-defined. In particular we have o :k;ar(l) o, dl = floul,) =
f(3n) = s and Dom(o) C Var(l). O

Now we can give an inductive proof of the counterpart of Theorem 6.3.10:

Theorem 9.3.11 If Ry and R are mutually orthogonal, then =g, and
3R, have the commuting diamond property.

Proof Abbreviate =g, by =3;. Suppose s =i tx, K = 0,1. We show by
induction on the derivation of s =3¢ g that there is a u such that t; =1 u,
k=0,1. If s =3¢ tg or s =31 t1 by rule (A),ie. ty =sfork=0or k =1,
simply set u := t1_; and recall that =3 is reflexive: t1_x =3 u &1k tk.
Now consider the remaining cases (see Fig. 9.1):

(B) In this case s = ol and ¢y = or for some (I — r) € Ry. We distinguish
according to which rule was used in the last step of the derivation of
s =31 t1:

210 9 Combination Problems

f(S],...) = ol =9 oOr f(Sl,...) =0 f(t()l,...)
g W1 1 1
f(tu, .) = U’l 30 o'r f(tll, ..) :Ko f(ul, .)

Fig. 9.1. Cases (B)-(C) and (C)-(C).

(B) Because of mutual orthogonality, the case s = o1l and t; = o171
for some (I3 — 71) € R; cannot arise, as it would indicate a critical
pair between Ry and R;.

(C) In this case s = f(3,), t1 = f(tin) and s; =1 t1;, i =1,...,n. Be-
cause [is not a variable it is of the form f (Z;) Therefore ol; =1 t1;.
Since [is the lhs of a rule in Ry, and Ry and R; are mutually ortho-
gonal, each [; fulfils the assumptions of Lemma 9.3.10. Hence there
are o; such that o :;}}m"(ll) oi, oil; = t1; and Dom(o;) C Var(l;).
Let o’ := U 0i, which is well-defined because [is linear. Thus we
have o :{})‘"(l) o’ and, because Var(r) C Var(l), Lemma 9.3.9 im-
plies tg = or =31 o’r. Since we also have t1 = f(t1n) = f(onln) =
o'(f(In)) = o'l o o'r it follows that u := o'r works.

(C) In this case s = f(3,), to = f(ton) and s; = to;- We again distinguish
according to which rule was used in the last step of the derivation of
s 31 t1:

(B) This case is dual to the nested case (C) above.

(C) In this case t; = f(tin) and s; =31 t1;. By induction hypothesis
there are u; such that tx; =1 u; for all k and 7. Hence tx =31_x
f (@) =: u by rule (C). O

Because two reductions are strongly commuting if they have the commuting
diamond property, it now follows from the Commutation Lemma that =g,
and =3g, commute. Because = = %, this proves Theorem 9.3.5.

What is the relationship between orthogonality and mutual orthogona-
lity? In Subsection 2.7.1 we saw an example of how commutation gene-
ralizes confluence: the Commutation Lemma implies Lemma 2.7.4. It is
tempting to think the same is true in this subsection, namely that Theorem
9.3.5 (“Mutually orthogonal systems commute”) subsumes Corollary 6.3.11
(“Orthogonal systems are confluent”). This would indeed be the case if “R
is orthogonal” implied “R and R are mutually orthogonal”. However, there
is a subtlety here: “R is orthogonal” means that R has no critical pairs,

9.4 Combining word problems 211

which, by definition, allows trivial overlaps of a rule with itself at the root.
On the other hand, mutual orthogonality rules out all overlaps, even trivial
ones. Therefore “R and R are mutually orthogonal” is true only if R = 0.

Nevertheless, it is possible to generalize Theorem 9.3.5 so that it subsumes
Corollary 6.3.11. Call Ry and R; mutually weakly orthogonal if they
are left-linear and all critical pairs between a rule of Ry and a rule of Ry are
of the form (u, u). A result by Toyama [244, Thm. 3.1] implies that mutually
weakly orthogonal systems commute. Because R and R are mutually weakly
orthogonal if R is weakly orthogonal, this implies that weakly orthogonal
systems are confluent.

Exercises

9.2 Show that the following system is confluent:

gx)+y — flz+h(y)), h(a) +9(y) — f(h(y)+9()),
h(z) +g(a) — f(h(z)+9(2)), z+h(y) — fl9(z)+y).

9.3 Prove that confluence is modular for terminating systems.

9.4 Prove the following theorem for arbitrary Ry and R; and reflect on
its usefulness.
If Ry and Ry are confluent, all critical pairs between a rule of Ry and
a rule of Ry are joinable w.r.t. RyU Ry, and RyU Ry terminates, then
Ry U Ry is confluent.

9.5 Prove directly, i.e. without using Toyama’s Theorem, that

(a) if the disjoint union Ry U R; is confluent on T'(Xo U X1, V), then
each Ry is confluent on T'(Xg, V),

(b) if Ry is confluent on T'(Xo, V), then Ry is confluent on T'(X', V)
for every ¥/ D Y.

9.6 Prove convergence of Ry in Example 9.3.2.

9.7 Prove that the original definition of =% and the one given in Defini-
tion 9.3.8 are equivalent.

9.8 Prove Toyama’s theorem for left-linear systems using Theorem 9.3.5.

9.9 Let Ry and R; be mutually orthogonal. Does confluence of Ry U R;
imply confluence of both Ry and R;? Give a proof or counterexample.

9.4 Combining word problems

We are now back from the world of term rewriting to that of equational
reasoning. Given decision procedures for a collection of equational theories
~E,, can they be combined into a decision procedure for ~g, where E is the

212 9 Combination Problems

union of the Ex? Of course this cannot work in general: it is easy to find
decidable equational theories whose union is undecidable (see Exercise 9.10).
Hence we assume that the individual theories do not share function symbols.
Nevertheless the problem remains nontrivial. Therefore we have structured
our approach as follows: An example-based subsection explains the key ideas
(“how”). It is followed by two subsections which formalize the intuitive ideas
and prove that they work (“why”). Finally we present a realization in ML.

9.4.1 The key ideas

We start with just two theories:
Si:={+}, Bi={z+y~y+z}, Xo:={l,}, Ba:={l-z=z-1}.

In the sequel ~;, abbreviates ~g, and F is the union of all Ej.

Given a word problem s ~g t, where s and ¢t may contain function symbols
of all signatures involved, we cannot apply the decision procedures for any
of the =} because they require pure terms. This obstacle can be overcome
quite easily by “abstracting” alien subterms:

Replace all alien subterms in s =g t by new variables, replacing equi-
valent subterms by the same variable.

For example, in the mixed problem (z - 1) +y =g y + (1 -) the two alien
subterms z-1 and 1-x are equivalent modulo =2. Therefore they are replaced
by the same new variable v, which yields the pure problem v + y =~ y + v,
which is valid.

In general, the abstraction process is recursive. For example, abstracting

(- @+y)+2 ~ 2+ (+2)-1) (9.1)
requires us to check the identity
l-(z+y) ~g (y+a)-1 (92)
which in turn requires us to check the pure identity
r+y ~ Y+
Since this identity is valid, identity (9.2) becomes
1l-v =9 v-1
which is also valid, and identity (9.1) becomes

v+2z R z4v

9.4 Combining word problems 213

which is also valid, thus implying validity of the original identity (9.1).
Based on this abstraction process we define an approximation £ of ~g:

s = t iff the root symbols of s and ¢ come from the same signature ¥
and abstracting s ~g t as explained above (where alien subterms are
recursively compared w.r.t. &) yields a valid identity s’ = ¢'.

If each Ej is collapse-free, i.e. does not contain an identity s ~ z or z = s,
it turns out that & coincides with ~g. Otherwise = is too weak, i.e. does
not identify all ~g-equivalent terms. For example, let us add a third theory

Y3 :={h}, E3:={h(z,z) =z},
and consider the identity
h(z +y,h(y,y) +z) ~g Y+ (9.3)

Because the root symbols i and + come from distinct theories, the two terms
are not equivalent modulo &. However, the identity is valid because the
terms can be collapsed to two =-equivalent terms. This collapsing process
is the second key component in the combination procedure.

Collapsing is a bottom-up process. We go through identity (9.3) but
ignore subterms with root symbol + because Ej is collapse-free. Hence we
start with the subterm h(y,y) which collapses to y because the identity
h(y,y) =~3 y holds (which can be checked using the decision procedure for
~3). In order to collapse the resulting lhs h(z 4y, y +z) further, we need to
go through the same abstraction process as above. Because x +y = y + z,
both alien subterms are abstracted by the same new variable v, which yields
h(v,v). Because h(v,v) ~3 v holds, the whole lhs collapses to either z +y
or y + x, it does not matter which. Now we can safely use = to decide the
collapsed identity £+ y g y+ = (or y + = ~g y +).

In general, the collapsing process works like this:

To collapse a term r with root symbol in X, first collapse all alien
subterms of r resulting in a new term s. Now abstract all alien subterms
of s w.r.t. =, resulting in a pure term ¢. If ¢ ~ v for some v € Var(t),
then ¢ collapses to the term w abstracted by v, or to v if v is not the
result of an abstraction. Otherwise ¢ collapses no further.

Remarks:

1. The test t =i, v is effective because = is decidable.

2. If Ej is nontrivial, there is at most one v € Var(t) such that ¢ ~i v,
because t ~ x and t ~y y implies x = y, which implies every identity
ifx#y.

214 9 Combination Problems

To decide s ~g t, it suffices to test s’ = ¢/, where s’ and ' are the result of
collapsing s and ¢. The remainder of this section is dedicated to formalizing
and proving this statement. All examples in the following subsections refer
to the theories ~1, ~9 and =3 as defined above.

9.4.2 The formal solution

We are given an index set K and for each k € K a set of identities Fj C
T (3, V) x T(Xg, V) such that s ~y ¢ is decidable for all s,t € T'(Zg, W)
where W can be an arbitrary set disjoint from X;. The signatures ¥ are
pairwise disjoint. We abbreviate J,cx X by 2.

We assume that each Ej is nontrivial, i.e. x = y does not hold. This is no
restriction: if Fj, is trivial, so is F, and trivial theories are trivially decidable.
On the other hand we can now prove the following nice consequence:

Lemma 9.4.1 t=px = € Var(t).

Proof If t ~; x but ¢ Var(t) then we could instantiate ¢t ~j z to ¢t =
{z — y}(t) =~ {z — y}(z) = y which would lead to z =~ ¢t =~ y, thus
contradicting the nontriviality of Ej. O

To simplify matters a little, we work with ground terms, i.e. elements of
T(X), unless stated otherwise. This is no restriction, because variables can
be treated as yet another theory, say 0, such that Xy = V and Ey = (). For
any ground term ¢ we define theory(t) := k if root(t) € L. The letters F,
G and H range over ground contexts, i.e. Upcx T'(Xk, {C}). Note that any
term s € T(X) can be written uniquely as F[s;] for suitable F' # O and 3,,.
In case s € T'(Xx) we get F'=s and n=0.

Let = be an equivalence relation on T'(X). Abstracting the alien subterms
of a term w.r.t. = is defined as follows:

[F[%]]i — { F([si]=,...,[sa]=) ifF € .T(Ek’ {@h),
= [F[3n]]= otherwise.

For example, [(z - 1) + Y8, = [z - Uny + [y~ = {z- 1,1 2} + {y} and

(- 1) +y2, = [(z-1) + ey = {(@- 1) +9,(1-2) +).

It its easy to see that [f(3,)]L = f([s1]%,...,[s]E) if f € Zp.

Note that [s]X is an element of T(X,T(X)/=), which we now take a
closer look at. Although T'(X)/= is not called V and its elements are not
called z, y and z, they play exactly the role of variables in the formation of
T(3k, T(X)/=) because Xy, and T'(X)/= are disjoint. In particular, identities

9.4 Combining word problems 215

over terms in T'(X, T'(X)/=) are stable under substitutions acting on equiva-
lence classes. Summing up this discussion, [.]%, 5 18 precisely the abstraction
operation informally described in the previous subsection.

With respect to computability, note that it is neither necessary nor in gen-
eral feasible to compute the set-theoretic representation of the equivalence
classes: in order to decide that [z - 1], + [Y]as =1 [Y]ne + [1 - Z]a, holds, it
does not matter which (potentially infinite) sets [z - 1], and [1-z]~, expand
to, but merely that they are identical, which can be tested by comparing the
representatives, i.e. checking that x - 1 =9 1-x. More generally, this means
that [s]k ~ [t]L is decidable if = is. Thus we define 2 as follows:

st & k. k= theory(s) = theory(t) A [s]E =~y [t]E.

This constitutes a definition of & by recursion on the rank of s and ¢: if
k = theory(s) = theory(t) then all abstracted subterms in [s]& and [t]% are
of the form [u]~ where u is an alien subterm of s or ¢. This explains why the
above definition of 2 constitutes a total recursive function for computing .
The following recasting of example (9.1) should make things clearer:

1-(z+y)+2z = z+((y+z)-1)

= - (@+y))=+elx =[x+ [(y+2) 1)
A Lfe+yls ~ [y+a]x-1
« [tle+ Y]> ~1 [y + [2]~

Note that by assumption the variables z, y and z are part of a theory k such
that z ~y y < r =y and hence alsoz =y &z =1y.

Next we formalize the collapsing process. We say that s collapses to t if
t is an alien subterm of s and [s]K ~ [t]~, where k := theory(s).

For every f € Egcn) we define an n-ary function f% on terms:
fY(s1,...,8n) := if f(35) collapses to t then t else f(3,).

Obviously f¥ is not uniquely defined because f(35;) could collapse to more
than one ¢ (we will see that all such ¢ are equivalent w.r.t.). In this case
fY returns an arbitrary but fixed such #: f¥ is still a function, albeit an
underspecified one. The collapsing process extends homomorphically to a
function | on terms:

Flst,-s8)l = fH(sd, .y 8ad).

We leave it to the reader to verify that h(z+y, h(y,y) +z)| € {z+y,y+2},
as claimed in the informal solution to example (9.3).

Observe that there is a gap between the informal explanation of collapsing
in the previous subsection and |}: the latter is less “efficient” but simpler to

216 9 Combination Problems

work with because it descends into the term one function symbol at a time,
whereas the former descends to the alien subterms in one step. We will see
that the two methods are equivalent (modulo £).

Correctness of the decision procedure for ~g outlined earlier amounts to

Theorem 9.4.2 s~pt & s| =t|.

The proof of this theorem is the subject of the next subsection.

Clearly ~g is decidable if & and |} are decidable/computable. This in turn
is implied if each = is decidable, theory is computable and there exists a
computable mapping from each k to ~j. The latter two conditions are easily
satisfied if K and each X are finite.

Corollary 9.4.3 Let K and each ¥y be finite. If each =y is decidable, so
8 ~E.

An ML implementation of the decision procedure for ~p is presented in
Subsection 9.4.4.

9.4.3 Correctness
We start by deriving two useful lemmas for reasoning with equivalence clas-
ses. The first one needs some more notation:

Definition 9.4.4 The set of alien subterms of s is denoted by Aliens(s).
Now define Aliensg(s) := if theory(s) = k then Aliens(s) else {s}.

Recall now that equivalence classes act like variables.

Lemma 9.4.5 If = and =3 are equivalences on T(X) such that u =1 v =
u = v for all u,v € Aliensy(s) U Aliensi(t) then [s|E ~g [t]E, implies
[s]L, ~E [tI,

Proof The substitution o := {[u]=, — [u]=, | u € Aliensi(s) U Aliensi(t)}
is by assumption well-defined. Because ~g is closed under instantiation,
[s]€, ~g [t]X, implies [s]&, = o([s]k,) ~p o([t],) = [t]E,. O
In a similar vein we have

Lemma 9.4.6 [slk, ~e [tlk, = s~gt.

Proof Let 7 : T(X)/~y, — T(X) be some function mapping each equivalence
class to some representative, i.e. 7([u]~y) =g u. Because ~g is closed under
instantiation, it is in particular closed under the homomorphic extension of
7 to T(Zk, T(X)/~y) and we obtain s ~p 7([s]k) g 7([t]L,) ~pt. O

We will now examine the basic properties of =.

9.4 Combining word problems 217

Lemma 9.4.7 st = [s]k =~ [tIE.

[}

Proof Assume s = t. By definition this means theory(s) = theory(t).
If theory(s) = k then [s]& =, [t]& follows by definition of 2. Otherwise
[s]& = [s] = [t]= = [t]&. O

More interestingly, we have
Lemma 9.4.8 The relation = is a congruence on T(X).

Proof Tt is easy to see that & is an equivalence because each = is one.
To see that it is a congruence, let f € 256") and s; 2 t;, 1 = 1,...,n.
Lemma 9.4.7 implies [s;]& ~ [t;]&. Because =~} is a congruence, this means

[f ()& = f([5n1&) =k f([Tn]&) = [f(Zn)]& and thus f(37) & f(&n)- O

Observe that the notation [, is short for [s1]x, ..., [sp]x~.
Finally we can show soundness of = w.r.t. ~g. This lemma is so basic we
seldom refer to it explicitly in the sequel.

Lemma 9.4.9 s=t = s~pgt.

Proof by induction on the rank of s = F[s,,] and ¢t = G[t,]. Assume the
lemma holds for all s',¢' € {s1,...,8m,t1,..-,tn}-

s=t = F([Smlx) = G([tn]=)
= F(fml=) ~5 G([T]z)
= F([Sml~g) = G([tn]~g) Dy ind. hyp. and Lemma 9.4.5
= F(Sm) ~g G(t,) by Lemma 9.4.6. |

These lemmas are all we need to know about =. Let us now turn to {|. We
start by showing that f¥ is uniquely determined modulo &:

Lemma 9.4.10 If f(3;) collapses to t then f¥(3;) = t.

Proof If f(35) collapses to t then f¥(3;) = t' for some t’ that f(3;) collapses
to. But then [f(3,)]L =~ [t]~ and [f(3n)]E ~ [t']~ imply [t]~ ~4 [t']~ and
hence, because Fy, is nontrivial, [t~ = [t/], i.e. t & ¢, O

Now we can prove that |} is sound w.r.t. =g:
Lemma 9.4.11 sl =g s.

Proof by induction on s = f(3,) where f € E,(C"). From the induction
hypothesis s;| ~g s;, i = 1,...,n, we obtain s’ := f(3,;{) =g f(3n) = s.
Now we analyse si} = f¥(3:1).

If s’ collapses to ¢, then s|| & ¢ (by Lemma 9.4.10) and [s']& ~ [t]~ = [t]E.
The latter implies [s']% ~p [t]& and therefore, by Lemma 9.4.5, [¢]5_ ~g

218 9 Combination Problems

[t]’;E, which in turn, by Lemma 9.4.6, implies s’ ~g t. Putting this all
together we get sl &t ~g s’ =g s.
If s’ does not collapse, we have s} = f(5;1) = s’ ~g s. O

Combining Lemmas 9.4.9 and 9.4.11 we obtain s} 2 t|| = s =g sl =g
t| ~g t, the soundness direction of Theorem 9.4.2.

We now start to work on completeness. As a warming-up exercise we
show that | is idempotent:

Lemma 9.4.12 No subterm of s{ collapses.

Proof by induction on s = f(3;) where f € 2,(?).

If f(3,{) collapses, then s} is an alien subterm of f(3,{) and therefore a
subterm of some s;{, in which case the induction hypothesis applies.

If f(3n{) does not collapse, s} = f(5,{). Therefore s| does not collapse
and by induction hypothesis its proper subterms don’t either. a

Recall that every term is its own subterm. Hence s|} does not collapse either.
Now we concentrate on the interaction between = and |}. For a start we
show that 2 preserves collapse:

Lemma 9.4.13 If s1 & s9 and s collapses to t1, then sg collapses to some
to such that t1 = tq.

Proof Assume s; = s and [s1]& = [t1]~ for some t; € Aliens(s1). Lemma
9.4.7 implies [s2]& ~ [s1]& and hence [so]k =~ [t1]~. By Lemma 9.4.1 it
follows that [t;]~ € Var([s2]&). Therefore there is some to € Aliens(sz2) such
that t1 & t5 and hence sy collapses to ta. O

Now we can easily show that & is compatible with every f¥:

Lemma 9.4.14 If f € Efcn) and s; 2 t;, i =1,...,n, then f4(3;) = f4(%,).

oY

Proof Because = is a congruence, s; = t; implies f(3;) & f(f.). By
Lemma 9.4.13 there are exactly two cases. Either f(3;) collapses to some
s, f(tn) collapses to some ¢t and s & ¢, in which case Lemma 9.4.10 implies
G =2 s =2t = fYI,). Or neither f(3;) nor f(%,) collapses, in which
case f4(57) = £(57) = (&) = F4(E)- O

We now bridge the gap between the recursion pattern for = and |: while |} is
defined by recursion on the structure of terms, £ is defined by recursion on
their rank. The following lemma shows that |} can be extended to recursion
on the rank.

Notation: in the sequel we extend |} to substitutions in the obvious way:
otz = (o).

9.4 Combining word problems 219
Lemma 9.4.15 If s € T(Zg, V) then

t if o¥s collapses to t,
ols otherwise.

oo =

Proof by induction on s. Call the rhs of the claim o¥(s). We need to prove
(0s)| = o¥(s). If s is a variable, then (os)| = o¥s. Lemma 9.4.12 tells us
that o¥s cannot collapse and hence (os){ = a's = o¥(s).

If s = f(35), then (0s)y = fY(75,1}). Note that because s; € T(Zx, V)
either [o%(s;)]8 = [0%(s;)]> =~ [o¥s;]E (if o¥s; collapses, which excludes
s; € V because of Lemma 9.4.12) or o¥(s;) = o¥s; (otherwise) and hence
[0 (s:)]E =~ [0¥s;]L in both cases. By Lemma 9.4.7, the induction hypothe-
ses and the observation just made, we get [(os;){|& =~y [o¥(s;)]& =4, [o¥s;]E
and hence [f(@3:)]& =~y [f(o¥3n)]&, which implies f(T3:4}) = f(o's,) =
o¥s. Lemma 9.4.13 tells us there are exactly two cases. Either f(73,{)
collapses to some t, o¥s collapses to some t and t = ¢/, in which case
(os) 2t =t = g¥(s). Or f(73,)) and o¥s do not collapse, in which case
(05) = f(TF)) = a¥s = a¥(s). O

Lemma 9.4.16 Ifl ~ r € E, then (o) = (or){.

Proof First we consider the case where theory(c¥l) = theory(alr) = k.
Observe that [o¥]E = o'l ~ o'r = [o¥r]&, where o’z := [oVz]E, and hence
that 0%l = olr. By Lemma 9.4.13 there are two cases.

Either o¥1 collapses to some s and o¥r collapses to some t such that ¢ & s
Then Lemma, 9.4.15 implies (ol)|} & s 2 ¢t = (or){. Or neither 0¥l nor o¥r
collapses, in which case (ol)|} = 0¥l = o¥r = (or)|.

Now we look at the case where either theory(a¥l) # k or theory(a'r) # k.
For concreteness, assume theory(c'l) # k and hence [€ V, in which
case Lemma 9.4.1 implies I € Var(r). The case theory(o'r) # k is triv-
ial because it implies r € V and hence | = r. Because ol does not
collapse (Lemma 9.4.12) and because o'r collapses to o'l (theory(o'r) =
k), Lemma 9.4.15 yields (o1)l} = ¥l = (o7){. O

Now we can establish the completeness direction of Theorem 9.4.2:
Lemma 9.4.17 s~pt = s| =tl.

Proof Because ~p = &g and £ is transitive and symmetric, it suffices to
show that s — g ¢ implies s{| = t|}. Suppose s —g t, i.e. there are (I =) €
Ey, p € Pos(s) and o such that s|, = ol and t = s[or],. Lemma 9.4.16
implies (ol) = (or)l). Using Lemma 9.4.14, a simple inductive argument
on the length of p shows sl = (s[ol],)d = (s[or]p) = ti. a

220 9 Combination Problems

9.4.4 The implementation in ML

The ML implementation follows the above mathematical treatment quite
closely. The main question is how to deal with subterm abstraction, for
example in the test [s]% =, [t]E? Instead of doing the abstraction before
calling the decision procedure for =, say eqx, we let eqx do the abstraction
itself by passing it a decision procedure for =. This could be called lazy sub-
term abstraction. This distinction can be made more precise by introducing
a type abbreviation:

type eqf = term * term -> bool

Eager subterm abstraction would mean that each eqy has type eqf, lazy
subterm abstraction means it has type eqf -> eqf because it is passed the
decision procedure for equality of its alien subterms as an argument. The
index set K is implemented by int. Hence we assume there is a function eq
of type int => eqf -> eqf such that eq k is the decision procedure for ~;. We
also assume there is a function theory of type term -> int.
Lazy subterm abstraction may seem to defeat modularity: we now require

a decision procedure for ~ to expect terms containing alien subterms which
need to be compared with the help of an additional argument function.
Fortunately, this is not a real restriction: every black-box decision procedure
of type eqf can be turned into one of type eqf -> eqf as follows:

(* mkLazy: eqf -> (eqf -> eqf) *)

fun mkLazy eagerEq subEq (s,t) =

let val (s’,t’) = Abstract alien subterms of s and ¢ modulo subEq by new variables
in eagerEq (s’,t’) end;

However, unless the decision procedure is really given as a black box, it is
usually trivial to modify its code to expect alien subterms. In particular,
the result is much more efficient than wrapping the unmodified procedure
up in mkLazy.

Due to lazy subterm abstraction, the implementation of =2, called cfeq
(“collapse-free equality”) of type eqf, is trivial:

fun cfeq (s,t) = (theory s = theory t) andalso (eq (theory s) cfeq (s,t));

The implementation of || (see Fig. 9.2) follows the strategy inherent in
Lemma 9.4.15: first collapse all alien subterms, then collapse the top layer
in one step: collAliens k collapses all k-alien subterms and coll collapses the
whole term. The latter is achieved by trying to equate the term ¢ with one
alien subterm u after the other. Aliensk(t) is computed by aliens k t.

Now we can define the combined decision procedure of type eqf:

fun eqE (s,t) = cfeq (collapse s, collapse t);

9.4 Combining word problems 221

(* collapse: term -> term *)
fun collapse t =
let fun collAliens k t = (case t of
V_=>t
| T(f,ts) => if theory(t) <> k then coll t
else T(f, map (collAliens k) ts))
and coll s =
let val k = theory s
val t = collAliens k s
fun try [1 = ¢
| try (u::us) = if eq k cfeq (t,u) then u else try us
in try(aliens k t) end
in coll t end;

(* aliens: int -> term -> term list *)
fun aliens k t = if theory(t) <> k then [t]
else case t of V _ = []
| T(_,ts) => concat(map (aliens k) ts);

Fig. 9.2. | in ML.

If eq k implements = then eqF implements ~g.

Strictly speaking, the above functions should be parameterized over eq
and theory to make them truly generic. We have avoided this merely to
keep matters as simple as possible.

So much for the combination aspect. Let us now look at a sample instan-
tiation. Here we have four theories, where 0 represents variables:

fun theory(V _) = 0
| theory(T(f,_)) = case f of "f" => 1 | "g" => 2 | "h" => 3;

Each index is mapped by eq to a decision procedure of type egf -> egf:

fun eq 0 = varEq
| eq 1 = commEq
| eq 2 = assocEq
| eq 3 = idempEq;

Equality on variables is identity:

fun varEq _ (z,y) = z=y;

To see how lazy subterm abstraction works, we look at assocEq

fun assocEq eq (s,t) =
let fun fringe(T("g",[s,t]1)) = (fringe s) @ (fringe t)
| fringe(t) = [t];
val fs = fringe s;
val ft = fringe t
in (length fs = length ft) andalso forall eq (zip(fs,ft)) end;

which implements equality modulo associativity: fringe “flattens” the term,
i.e. it accumulates (from left to right) the alien subterms in a list. This list is
a normal form of the term under associativity and hence two such terms can

222 9 Combination Problems

be compared by comparing their fringes. For example, both g(g(z,y), 2) and
9(z, g(y, z)) have the fringe [z, y, z]. Subterm abstraction enters the picture
when two fringes are compared: the equality test used is the argument
function eq.

The same pattern repeats itself in the other two decision procedures
commEq and idempFEq: alien subterms are compared with the help of the
extra argument of type eqf. We leave it as an exercise to implement these
two functions.

Exercises

9.10 Find two sets of identities F;, and Fs such that the word problem
is decidable for E; and FE; but not for Ey U Ey. (Hint: use Exam-
ple 4.1.4).

9.11 Find two sets of identities F; and Es over disjoint signatures such
that the ground word problem is decidable for ;1 and E2 but not for
E; U E5 (Hint: use Exercise 4.1).

9.12 Implement the missing ML functions commFEq and idempFEq for com-
mutative and idempotent (h(z,z) =) equality.

9.5 Bibliographic notes

Research on modularity of termination started with Toyama’s counterexam-
ples [242]. The first two conditions in Theorem 9.2.4 were first proved by
Rusinowitch [220], the last one by Middeldorp [175, 176]. Further sufficient
conditions are due to Gramlich [98] and Ohlebusch [194].

Subsection 9.3.2 deals only with orthogonal combinations. Theorem 9.3.5
goes back to Raoult and Vuillemin [214]. A direct generalization of Huet’s
Parallel Closure Theorem to commutation is also possible. Toyama [244]
even goes a little further by considering root overlaps separately.

Sketches of the combination of decision procedures for the word problem
are due to Tidén [240] and Schmidt-Schau8 [223]. The above treatment
is due to Nipkow [186, 188]. An alternative proof idea based on unfailing
completion goes back to [32]. The combination procedures underlying these
approaches are all based on collapsing and abstracting alien subterms in a
fixed order. Baader and Tinelli [13] present a combination method which
is based on transformation rules that can be applied in any order. Their
correctness proof is purely algebraic.

10

Equational Unification

Equational unification is concerned with the satisfiability problem w.r.t. a
fixed set of identities E: given terms s and t, find a substitution o such that
o(s) =g o(t). This substitution is called an E-unifier of s and t. Syntactic
unification, as considered in Section 4.5, is the special case where E = ().
Equational unification thus generalizes syntactic unification by taking into
account semantic properties of function symbols (axiomatized by the identit-
ies in F). For example, assume that F implies that the binary function sym-
bol f is commutative (i.e. f(z,y) =g f(y,) holds for arbitrary variables z
and y). Given the (syntactic) unification problem S := {f(x,y) =’ f(a,b)},
where x,y are variables and a,b are constants, the algorithm for syntac-
tic unification described in Section 4.5 returns the most general unifier
o :={x — a,y — b}. The substitution 7 := {x — b,y — a} is not a
syntactic unifier of S since o(f(z,y)) = f(b,a) # f(a,b) = o(f(a,b)). It is,
however, an E-unifier since f(b,a) =g f(a,b).

On the one hand, our interest in equational unification comes from the
fact that it can be seen as a dual problem to the word problem: whereas the
word problem for E asks whether the universal formula VZ. s = t holds in
all models of F, the unification problem is concerned with whether the exist-
ential formula 3Z. s ~ t holds in all nonempty models of E (see the remark
at the beginning of Chapter 4). On the other hand, equational unification
is a very useful tool in term rewriting, theorem proving, and logic program-
ming. In rewriting modulo an equational theory ~g (see Section 11.1), the
computation of critical pairs depends on an F-unification algorithm. In the-
orem proving, it was initially shown by Plotkin and then extended by others
that certain equational axioms can be handled in a more efficient way by a
resolution-based theorem prover if they are removed from the set of input
clauses and instead built into an equational unification procedure. In logic

223

224 10 Equational Unification

programming with equality, logic programs extended by a set of identities F
also require F-unification in place of syntactic unification in SLD-resolution.

In the following, we extend the definitions introduced in Section 4.5 for
syntactic unification (such as instantiation quasi-order, unification problem,
mgu, etc.) to the case of equational unification. Subsequently, we investigate
the unification properties of three specific equational theories more closely,
namely, commutativity, associativity and commutativity, and the theory of
Boolean rings. Whereas the unification algorithm for commutativity is quite
similar to the one for syntactic unification, the algorithms for the other two
theories depend on semantics rather than on syntax.

10.1 Basic definitions and results

In the following, let E be a fixed set of identities. We let Sig(F) denote the
signature of F, i.e. the set of all function symbols occurring in E. Let X be
a signature that contains Sig(F).

Definition 10.1.1 An E-unification problem over X is a finite set of
equations S = {s; z?E t1,...,8p z"E t,} between X-terms with variables in
V. An E-unifier or F-solution of S is a substitution o such that o(s;) ~g
o(t;) for i = 1,...,n. The set of all E-unifiers of S is denoted by Ug(S),
and S is called E-unifiable if Ug(S) # 0.

If an FE-unification problem consists of a single equation s z"E t, then we
will often omit the set brackets and call s ~%; t the unification problem.

For a given FE-unification problem over X, the signature ¥ determines
which function symbols may occur in the terms to be unified and in the
unifiers. The next definition classifies F-unification problems according to
which symbols may occur in ¥ — Sig(F).

Definition 10.1.2 Let S be an E-unification problem over X.

e S is an elementary FE-unification problem iff Sig(F) = X.

e Sis an E-unification problem with constants iff ¥—Sig(F) consists
of constant symbols.

e In a general FE-unification problem, ¥ — Sig(E) may contain ar-
bitrary function symbols.

In the following, we will often dispense with specifying ¥ explicitly. In this
case we assume by default that ¥ consists of the function symbols occurring
in ForS.

For syntactic unification, i.e. the case where E = (), elementary unification
problems consist of equations between variables, and unification problems

10.1 Basic definitions and results 225

with constants consist of equations between variables and constants. Thus,
in this case the only interesting type of unification is general @-unification.
The distinction between these three types of problems is important since
an equational theory may have different unification properties depending
on which type of unification is considered. Many applications of equational
unification give rise to general unification problems. For example, assume
that we want to solve the word problem for the theory of Abelian groups with
the help of a convergent TRS. Since the group operation f is commutative,
and commutativity cannot be oriented into a terminating rewrite rule, this
problem requires rewriting modulo an equational theory. In this case, the
appropriate theory turns out to be AC, which axiomatizes associativity and
commutativity of f (see Section 10.3 below). Now, the terms considered
when computing critical pairs modulo = 4o may contain an additional unary
function symbol, the inverse operation in Abelian groups, and an additional
constant symbol, the unit element in Abelian groups.

The set of all E-unifiers of a given FE-unification problem S is usually
infinite. In the case of syntactic unification, it is possible to represent this
possibly infinite set as the instances of a single most general unifier. For
equational unification, a single E-unifier is not always sufficient to repre-
sent all unifiers. In this case, the réle that the most general unifier plays
for syntactic unification is taken on by a minimal complete set of unifiers.
Before we can define this notion formally, we must adapt the definition of
the instantiation quasi-order (Definition 4.5.1) to the case of E-unification.

Definition 10.1.3 Let X be a set of variables. A substitution ¢ is more
general modulo ~g than a substitution ¢’ on X if there is a substitution
6 such that o'(z) =g 6(o(x)) for all z € X. In this case we write 0 <X o’
We also say that ¢’ is an E-instance of o on X.

It is easy to see that the relation <% defined in this way is again a quasi-
order. This definition differs from Definition 4.5.1 in two respects: syntactic
equality is replaced by equality modulo =g, and the substitutions need not
be equal on all variables, but only on the variables contained in the set X.
In the following, X will always be the set of variables occurring in the E-
unification problem S under consideration. We denote this set by Var(S).
The above definition of the E-instantiation quasi-order is justified by the fact
that any E-instance on Var(S) of an F-unifier of S is again an FE-unifier
of S, which is the property needed in applications. With a more restrictive
definition (which requires syntactic equality or E-equality on all variables),
fewer substitutions could be compared with the instantiation quasi-order,

226 10 Equational Unification

and thus the minimal complete sets of E-unifiers (see below) might become
unnecessarily large.

Definition 10.1.4 Let S be an E-unification problem over X and let X :=
Var(S). A complete set of E-unifiers of S is a set of substitutions C that
satisfies

e each o € C is an E-unifier of S,
o for all § € Ug(S) there exists o € C such that o <X 6.

A minimal complete set of F-unifiers is a complete set of F-unifiers M
that satisfies the additional condition

o for all 0,0’ € M, 0 <X o' implies o = o’

The substitution ¢ is a most general E-unifier (mgu) of S iff {¢} is a
minimal complete set of E-unifiers of S.

Example 10.1.5 Let C := {f(z,y) = f(y,z)} be the theory that axiomat-
izes commutativity of the binary function symbol f, and let S := {f(z,y) ~5
f(a,b)} where a and b are constant symbols. It is easy to see that any C-
unifier of S must either map = to a and y to b, or map z to b and y to a.
Consequently, the set {o1,02}, where

o1 ::{_’L‘f—)a,yl—)b} and 022={$Hb,yHa}a

is a complete set of C-unifiers of S. This set is also minimal since these two
substitutions are obviously incomparable with respect to ,S{Cfc v

Minimal complete sets of E-unifiers need not always exist (since complete-
ness and minimality may contradict each other), but if they exist, they are

unique up to the equivalence Nif associated with <X :

o~s o iff 0 <E o' ando’ <Ko

Lemma 10.1.6 Assume that My and Mgy are minimal complete sets of
E-unifiers of S. Then there ezists a bijective mapping B : M1 — Mg such
that o1 Ng B(o1) holds for all o1 € M.

Proof Since M, is a set of E-unifiers of S and My is a complete set of
E-unifiers of S, we know that for every o1 € M; there exists o2 € M3 such
that o9 ,Sif 01. This shows that we can define a mapping B : M1 — Ms
such that B(o1) S& o for all o1 € M;. By exchanging the réles of M; and
My in the above argument, we can also show that there exists a mapping
B’ : My — Mj such that B,(O'z) E o9 for all o9 € M.

Because B'(B(01)) <f B(o1) <f o1, minimality of M; implies that

~Y

B'(B(01)) = o3 for all 07 € M;. Symmetrically, B(B'(g3)) = o2 for all

10.1 Basic definitions and results 227

02 € Mj. Consequently, B and B’ are bijections that are inverse to each
other. Finally, we have (for all 01 € M1) 01 = B'(B(01)) <& B(o1) <& o1,
which shows B(a1) ~§ o1. a

In particular, this lemma tells us that all minimal complete sets of F-unifiers
of a given problem S have the same cardinality. For this reason, we can
define the wunification type of an equational theory ~g with respect to the
existence and cardinality of minimal complete sets of E-unifiers.

Definition 10.1.7 The set of identities E (or, equivalently, the equational
theory ~g) is of unification type

unitary iff a minimal complete set of F-unifiers exists for all E-unification
problems S, and it always has cardinality < 1.

finitary iff a minimal complete set of F-unifiers exists for all E-unification
problems S, and it always has finite cardinality.

infinitary iff a minimal complete set of E-unifiers exists for all F-unification
problems S, and there exists an F-unification problem for which this
set is infinite.

zero iff there exists an F-unification problem that does not have a minimal
complete set of F-unifiers.

Thus, F is unitary iff every solvable F-unification problem has a most gen-
eral E-unifier (mgu). The empty set of identities (), which defines syntactic
equality, is unitary. If F is finitary, then the set of all E-unifiers of a given
FE-unification problem can always be represented as E-instances of finitely
many unifiers. Commutativity C yields an example of a finitary theory that
is not unitary (see Section 10.2).

A finite representation of all F-unifiers via E-instantiation is not always
possible for theories having one of the other two types. Infinitary theories
always allow for a non-redundant (albeit possibly infinite) representation of
all unifiers. Associativity A := {f(z, f(v,2)) = f(f(z,y),z)} defines such a
theory (see Exercise 10.3). For theories of type zero, a non-redundant repre-
sentation of all unifiers need not exist. It is easy to see that a finite complete
set of F-unifiers can always be turned into a minimal one by removing re-
dundant elements. Thus, a unification problem that does not allow for a
non-redundant representation of all unifiers cannot have a finite complete
set of unifiers. The equational theory induced by Al := AU {f(z,z) = =}
is of type zero [8, 222].

The definition of unification type allows for arbitrary (i.e. general) E-
unification problems. If we restrict the definition to elementary E-unification

228 10 Equational Unification

problems (FE-unification problems with constants), we may obtain differ-
ent unification types. For example, the theory ACI := {f(z, f(y,2)) =~
f(f(z,y),2), f(z,y) = f(y,z), f(z,1) = z} is unitary for elementary uni-
fication, but only finitary for unification with constants and for general uni-
fication (see Section 10.3).

Given a set of identities F, unification theory tries to answer the following
questions:

e Is solvability of E-unification problems decidable? What is the complexity
of this decision problem?

e What is the unification type of E? How can (minimal) complete sets
of E-unifiers be computed? How large are these sets, depending on the
size of the unification problem, and what is the complexity of computing
them?

As pointed out above, the answers to these questions may differ, depend-
ing on which kind of unification problems (elementary, with constants, or
general) are considered. Algorithms that are able to decide solvability of E-
unification problems are called decision procedures for E-unification. For
finitary theories, algorithms that compute (finite) minimal complete sets of
FE-unifiers are called F-unification algorithms. Algorithms that enume-
rate (possibly infinite) complete sets of E-unifiers are called E-unification
procedures.

Exercises

10.1 Show that, for a set of identities F with an undecidable word problem,
E-unification with constants is undecidable.

10.2 Show that for every E-unification problem S there exists a general
E-unification problem S’ such that |S’| =1 and Ug(S) = Ue(S’).

10.3 Let A := {f(z, f(y,2)) = f(f(z,v),2)}, and consider the unification
problem S := {f(a, x) ~% f(x,a)}. Forn > 1, we define substitutions
oy, inductively as follows:

o1:={x—a} and o,y :={z— f(a,0,(x))}

Show that for all A-unifiers 6 of S there exists an n > 1 such that
6(z) =4 on(z), and that this implies that {0, | n > 1} is a minimal
complete set of A-unifiers of S.

10.4 Show that the A-unification problem {f(a,z) ~% f(z,b)} does not
have a solution.

10.5

10.6

10.7

10.8

10.9

10.1 Basic definitions and results 229

Let E be a set of identities, o a substitution, and X a finite set of
variables. Show that there exists a substitution 7 such that o ~§ T
and 7 is idempotent on X (i.e. 77(z) = 7(z) for all z € X).

The purpose of this exercise is to show that Lemma 4.5.3, which says
that two substitutions are instances of each other iff they are equal
up to a renaming, need not hold for E-instantiation, even if we use
“equal modulo ~g” in place of “equal”: Consider the set of identities
I := {f(z,z) =~ z}, and the substitutions ¢ := {z — y} and 7 :=
{z — f(y,2)}. Show that o Nf-w} T, but there does not exist a
renaming p such that o(x) ~; p7(z)

Let E be a set of identities such that, for every term ¢, the ~g-class
of ¢ is finite. Show that in this case Lemma 4.5.3 also holds for F-
instantiation:

o ~% o' & Trenaming p. o(x) ~p po’(x) for all z € X,
where X is a finite set of variables. (Hint: Show that finiteness of the
~p-classes implies that F is regular, i.e. s ~g t implies Var(s) =
Var(t). Then, use the fact that the ~g-classes are finite to reduce the
above claim to Lemma 4.5.3.)

The matching problem can be generalized to F-matching as follows:
Given terms ! and s, determine if there is a substitution o such that
o(l) =g s. This substitution is called an E-matcher of ! and s. Now,
let E be a set of identities such that, for every term ¢, the ~g-class of
t is finite. Show that in this case F-matching is decidable, and that
there is an algorithm for computing F-matchers. (Hint: compare with
Exercise 4.2.)
This exercise is meant to clarify the definition of the unification type of
an equational theory by considering complete and minimal complete
sets in an abstract order-theoretic setting. To keep things simple, we
consider partial orders instead of quasi-orders. Thus, let (U, >) be a
partially ordered set. A subset C of U is called complete iff for all u
in U there exists ¢ € C such that ¢ < u. A subset M of U is minimal
complete iff it is complete and for all m,m’ € M, m < m/ implies
m=m'.

(a) Show that U can have at most one minimal complete set.

(b) Show that U has a minimal complete set iff the set of minimal

elements of U is complete.
(c) Give an example of a partially ordered set U that does not
have a minimal complete set.

230 10 Equational Unification

(d) Show that a partially ordered set U that does not have a mi-
nimal complete set must have an infinitely descending chain.
(Hint: Zorn’s lemma.)

(e) Give an example of a partially ordered set that has an infinitely
descending chain, but also has a minimal complete set.

10.2 Commutative functions

Commutativity of the binary function symbol g can be defined by the iden-
tity Cy = {9(z,y) = g(y,z)}. In the following, we consider signatures
containing finitely many commutative symbols together with finitely many
free symbols. To be more precise, let ¥ := Yo U X be the disjoint union
of a finite set of binary function symbols £ (the commutative symbols)
and an arbitrary finite signature Xy (consisting of the free symbols). The
set of identities C' := {Jyez, Cy axiomatizes commutativity of the symbols
in Y.
The following lemma states some useful properties of ~¢.

Lemma 10.2.1 Let s,t € T(X,V) for a set of variables V.

1. s =c t implies that |s| = |t|, Var(s) = Var(t), and the root symbols of s
and t agree.

2. Foralin>0and f € 5, f(s1,...,8) mc f(t1, .. ta) iff s ~cti
fori=1,...,n.

8. For all g € Y,

g(s1,82) ¢ g(t1,t2) iff s1~ctiAsy~cta or
81 =g tg N\ 82 =g 1.

Proof The <-directions of statements (2) and (3) are trivial. For (1) and
the =-directions of (2) and (3), one can use the fact that s ~¢ ¢ implies
that there exists an n > 0 such that s &¢ t. It is now easy to prove the
claims by induction on n. a

10.2.1 A unification algorithm

The above lemma shows that in many respects ~¢ behaves similarly to
syntactic equality. For this reason, one can design a C-unification algorithm
by simply extending the transformation-based algorithm for syntactic uni-
fication with a rule that treats commutative function symbols according to
(3) of Lemma 10.2.1: an equation g(s1, s2) R:?C g(t1,t2) for g € ¥¢ can be
decomposed in two different ways. It is replaced either by the equations

10.2 Commutative functions 231

$1 %?C t1 and so z?o ta, or by s1 z?c to and s %76. t1;. This means that
a given C-unification problem is transformed into two new problems, with
the intended meaning that the original problem is solvable if one of the
new problems is solvable. Consequently, we must work with finite sets of
C-unification problems.

Definition 10.2.2 An extended C-unification problem is a finite (pos-
sibly empty) set M of C-unification problems. The set of all C-unifiers of
M is defined as

UC(M) = U UC(S),
SeM

that is, o is a C-unifier of M iff it is a C-unifier of an element S of M.

As in the case of syntactic unification, our goal is to transform a given
(extended) C-unification problem into solved form. Recall from syntactic
unification that a (C-) unification problem S is in solved form iff it is of the
form S = {z; zr'c t1,...,Tp z?o tn} for pairwise distinct variables x;, none
of which occurs in any of the ¢; (Definition 4.6.1).

Definition 10.2.3 The extended C-unification problem M is in solved
form iff all S € M are in solved form (w.r.t. Definition 4.6.1).

Note that, according to this definition, the empty set M =) is an extended
C-unification problem in solved form. By Definition 10.2.2, the set of all C-
unifiers of M =) is empty. Thus, M = () can be used as the “solved” form
of unsolvable (extended) C-unification problems. This situation should not
be confused with the case where)} € M, i.e. where M contains an empty
C-unification problem, which has the identity substitution as solution.

As in the syntactic case, a C-unification problem in solved form S :=
{z1 z?c t1,...,Zn zr'c tn} defines a substitution S = {1~ t1,...,2p —
tn}. Since S is a syntactic unifier of S, it is also a C-unifier.

Lemma 10.2.4 Let S be a C-unification problem and M an extended C-
unification problem.

1. If S is in solved form then S is a most general C-unifier of S.
2. If M is in solved form then {S| S € M} is a complete set of C-unifiers
of M.

Proof The proof of (1) is very similar to the proof of Lemma 4.6.3, and (2)
is an immediate consequence of (1). O

For a given C-unification problem S, our transformation-based C-unification
algorithm first builds the extended C-unification problem {S}, and then

232 10 Equational Unification

applies the rules of syntactic unification Delete, Orient, and Eliminate, as
well as Decompose (to free symbols f) and C-Decompose (to commutative
symbols g).

C-Decompose

? ?
? {s1 =g t,s2 =t} UT
~ t1,02)} T —
{g(s1,52) =c g(t1, t2)} {s1 zz. ta, So z'?o t1}uUT

Application of such a rule to an extended C-unification problem M means
that an element S of M is chosen to which the rule applies, and then S is
replaced in M by

e the problem S’ obtained by applying one of the rules Delete, Orient, Eli-
minate, Decompose (for free symbols f) to S, or

e the problems S’ and S” obtained by applying C-Decompose (for commu-
tative symbols g) to S.

In addition, if one of the rules Clash and Occurs-Check applies to a problem
S in M, then we can simply remove the (unsolvable) problem S from M.
We write M = M’ to indicate that M’ can be obtained from the extended
C-unification problem M by application of one of the rules Delete, Orient,
Eliminate, Decompose (for free symbols f), C-Decompose (for commutative
symbols g), Clash, and Occurs-Check.

Lemma 10.2.5 Let M be in normal form w.r.t. =>. Then M is in solved
form.

Proof Similar to the syntactic case. O

The transformation-based C-unification algorithm can now be described as
follows:

CUnify(S) =
M = {S};
while there is some M’ such that M = M’ do M := M’;
return {T | T € M}.

If the extended C-unification problem in solved form obtained by applying
the transformation rules is empty, then the algorithm yields the empty set
of substitutions as output. Thus, it is not necessary to treat non-unifiability
of S by a separate failure case.

Before proving that the algorithm always computes a finite complete set
of C-unifiers of the input problem S, we illustrate it by an example.

10.2 Commutative functions 233

Example 10.2.6 Let g € Y, and a,b € 2&9). Fig. 10.1 shows a sequence
of transformations that starts with the input problem {g(g(a,z),2) ~%
9(g(y,b), g(a, b))}, and yields the two solved forms {y =% a, z =5 b, z ~§
g(a,b)} and {z ~% b, z =} g(y,b)}. The corresponding output of CUnify is
the set {0, 7} whereo :={y— a,z— b, z— g(a,b)} and 7 :={x — b, z —
9(y,b)}. Note that o is a C-instance of 7 on Var(S), i.e. the complete set
of C-unifiers computed by CUnify is not minimal.

{{g(g(a,), 2) “ZJ 9(9(y,), 9(a, b))}} ==C-Decompose

{9(a,z) =% g(y,b), 2 =5 g(a,b)}, }

—— D
{9(a,) NZ; g(a,b), 2 z"c 9(y,b)} C-Decompose

{arly, =5 b, 2~7 g(a,b)},
{a z?C b’ z z?C Y, 2 z?C g(a, b)}a :Clash
{9(a,z) = g(a,b), z =& g(y,b)}
{a z7c Y, T "Mjc b, z w"c g(a,b)}, }
{9(a,z) =L g(a,b), 2 =% g(y,b)}

{ {a z?C Yy, z z?C' b, 2 "N“?C' 9(a, b)},

==(C-Decompose

{a z?c a, T zé b, 2 z?C 9(y,b)}, ==Clash

{a z?C b,z z?C' a, 2 zé’ g(ya b)}

==Orient ° =Decompose

Fig. 10.1. An example for CUnify.

Lemma 10.2.7 CUnify terminates for all inputs.

Proof We associate each C-unification problem S with the same triple of
natural numbers as in the proof of Lemma 4.6.5. An extended C-unification
problem M is associated with the multiset of the triples corresponding to its
elements. These multisets are ordered with the multiset order induced by the
lexicographic order on the triples. It is easy to see that each transformation
step decreases the multisets with respect to this order. O

234 10 Equational Unification

Lemma 10.2.8 Let M and M’ be extended C-unification problems. If
M = M/, then Uc(M) = Uc(M’).

Proof This is an easy consequence of Lemma 10.2.1. O

Together with Lemma 10.2.4 and 10.2.5, the last two lemmas show that the
algorithm CUnify is correct.

Theorem 10.2.9 Applied to a given C-unification problem S, CUnify al-
ways terminates and computes a complete set of C-unifiers of S.

As Example 10.2.6 demonstrates, this complete set need not be minimal. By
removing redundant elements (in the example the substitution o), the finite
complete set obtained in this way can be transformed into a minimal com-
plete set. It is, however, not clear how to design a C-unification algorithm
that computes such a minimal complete set “directly”.

Corollary 10.2.10 C is finitary (w.r.t. general unification), but not unitary
(even w.r.t. elementary unification).

Example 10.1.5 shows that C is not unitary for C-unification with constants.
Exercise 10.12 yields an example of an elementary C-unification problem
whose minimal complete set of C-unifiers has cardinality > 1.

10.2.2 The decision problem

By Theorem 10.2.9, CUnify yields a decision procedure for C-unification:
the input problem S is solvable iff the complete set computed by CUnify
is nonempty. If we are only interested in the decision problem, it is not
necessary to compute the whole complete set (which may be exponentially
large in the size of S). It is sufficient to design a nondeterministic algorithm
that guesses how to find one of the elements of the nonempty complete set.

Theorem 10.2.11 The decision problem for C-unification is NP-complete,
provided that ¢ # 0 and L contains at least two constant symbols.

Proof Let us first show that the problem is in NP, i.e. there is a nonde-
terministic polynomial decision procedure for (general) C-unification. This
nondeterministic procedure works on C-unification problems (instead of ex-
tended C-unification problems) since it uses a nondeterministic version of
C-Decompose, which chooses just one of the two problems generated by its
deterministic counterpart. Consequently, each search path of the nonde-
terministic procedure is very similar to a run of the transformation-based
algorithm for syntactic unification. As we have seen in the syntactic case,

10.2 Commutative functions 235

the transformation process may need exponential space and time. It is,
however, easy to show that the methods used to derive an almost linear
algorithm for syntactic unification can be used to obtain a nondeterministic
almost linear decision procedure for C-unification.

NP-hardness of the decision problem for C-unification (with constants)
can be shown by a reduction from positive 1-in-3-SAT, which is known to
be an NP-complete problem [95]. An instance of positive 1-in-3-SAT is
given by a finite set C = {C1,...,Cpr} of clauses of the form C; = p; V ¢; V r;,
where p;, g;,r; are propositional variables. A solution of C is a propositional
valuation that makes exactly one propositional variable true in each clause
C; of C.

The positive 1-in-3-SAT instance C is transformed into a C-unification
problem S¢ as follows: Let g € ¢, and let a,b € X be distinct constant
symbols. For each propositional variable p in C we introduce a variable zp,
and for each clause C; a variable y;. Replacing z, by a (b) will be interpreted
as evaluating p by true (false). The clause C; = p; V ¢; V r; is translated
into the equation

9(9(9(xp,, 74,), Tr,), ui) =G 9(9(9(b,b), a), 9(g(b, a), b)). (*)

The C-unification problem S¢ is the set of all these equations (for i =
1,...,n). We claim that a substitution o is a C-unifier of (x) iff it replaces
exactly one of the variables z,,, z4,, and z,, by a, and the other two by b.
Obviously, this implies that S¢ has a C-unifier iff C has a solution.

It is easy to see that any substitution that replaces exactly one of the
variables x,,, T4,, and x,, by a, and the other two by b, can be turned into a
C-unifier of (*) by choosing an appropriate image for y;. To prove the other
direction of the claim, assume that o is a C-unifier of (x). By Lemma 10.2.1,
there are two cases: either (1) o(g(g(zp,,%q,),2r,)) ~c 9(g9(b,b),a) or (2)
U(g(g(xpzaxqz)axn)) ~c g(g(ba a')’b)'

In case (1), we have either (1.1) o(g(xp,, zq,)) ~c g(b,b) and o(z,,) =c a,
or (1.2) o(g(zp;, ;) ¢ a and o(zr;) ~c g(b,b). Obviously, (1.1) implies
that o(zp;) = o(xg,) = b and o(z,,) = a. Case (1.2) is not possible since
9(s,t) % a for all terms s, ¢.

In case (2), we have either (2.1) o(g(xp,, ;) =c 9(b,a) and o(z,,) =c b,
or (2.2) o(g9(xp,,zq)) ~c b and o(z,,) ~c g(b,a). Case (2.2) is again
impossible, and Case (2.1) yields two subcases: (2.1.1) o(zp,) = o(zy,) = b
and o(zg,) = a, or (2.1.2) o(xg,) = o(xy,) = b and o(zp,) = a. O

236 10 Equational Unification

Exercises

10.10 Show that for every t € T'(X, V'), the ~¢-class of ¢ is finite.
10.11 Let X be a finite set of variables. Show that the C-instantiation
relation on substitutions, <&, is decidable. (Hint: use the above

exercise and compare with Exercise 10.8.)
10.12 Let g € X¢. Show that the C-unification problem

{9(z,y) =G 9(2,9(2,2))}

has a minimal complete set of C-unifiers of cardinality 2.

10.13 Let s,t € T(X%,V). By Exercise 10.10 we know that the ~¢-classes
of these terms are finite. Let {s1,...,sm} be the ~¢-class of s, and
{t1,...,tn} the ~c-class of t. Show that

Ues b= U tlls =" 1)),
i<

and that {0 | o is mgu of s; =’ t; for some i,5,1 <i<m,1<j<n}
is a complete set of C-unifiers of s z?c t.

10.3 Associative and commutative functions

The equational theory induced by the set of identities
AC:={(zxy)xz~a*x(yxz2), xxyy*zx},

which axiomatizes associativity and commutativity of a (single) binary func-
tion symbol *, is one of the theories most frequently used in rewriting modulo
equational theories and in theorem proving with built-in theories. One rea-
son is that, on the one hand, associativity and commutativity are properties
satisfied by many common binary operations (such as addition and multipli-
cation in rings, conjunction and disjunction in logics). On the other hand,
commutativity cannot be handled appropriately by the rewriting approach
introduced in this book since the identity x * y ~ y * would lead to a
nonterminating rule. In addition, modulo commutativity, associativity can
no longer be turned into a terminating rule (see Exercise 10.14).

In the following, we restrict our attention to elementary AC-unification,
which can be reduced to solving homogeneous linear diophantine equations
in the non-negative integers. AC-unification with constants can in principle
be treated by the same approach; it leads to both homogeneous and inho-
mogeneous linear diophantine equations, which complicates the description
of the technical details, without providing new insights.

10.83 Associative and commutative functions 237

It is more convenient to start with unification modulo the theory induced
by AC1:= ACU {z x1 = z}, and then go from there to AC-unification. In
the following, let ¥ := {*} for a binary symbol *, and X; := X U {1} for
a constant symbol 1. All terms considered in this section will be elements
of T(X1,V) for a countably infinite set of variables V := {z1,z2,23,...}.
Before we consider unification modulo ~4¢ and =~4¢;, we show that the
congruence classes of these theories can be characterized with the help of
vectors of non-negative integers.

10.3.1 Terms as vectors and substitutions as matrices

Since * is associative, we can dispense with all parentheses. Following the
usual conventions in mathematics, we will also drop the multiplication sym-
bol * (e.g., use zy in place of x * y), and express iterated multiplication by
exponentiation (e.g., write 3 instead of z * = *). The exponent 0 yields
the unit 1 (e.g., 20 stands for 1). Commutativity of * means that we can
group identical variables together (e.g., write 23y? instead of zyxyxz). This
observation leads to the following characterization of the congruence classes
of ~4¢;. Recall that the number of occurrences of the variable z in the term
t is denoted by [t|.

Lemma 10.3.1 Let s,t € T(X1,V).
sxacit Uf |s|lz = |tz forallz € V.

Proof The =--direction can easily be shown by induction on the number
of rewrite steps necessary to transform s into t. To prove the <-direction,
let z1,...,2, € V be such that Var(s) U Var(t) C {z1,...,2,}, and let

ki := |s|s, and £; := |t|s, (i = 1,...,n). Obviously, s ¢ 2o - - - xk» and
t X401 xfl a:f,” Thus, k; = ¥¢; for i = 1,...,n implies s ®4¢; t. O
Given a finite set X,, := {x1,...,Z,} of variables, the ~4¢;-class of a

term s € T(X1,X,) is thus uniquely determined by the vector ¥,(s) :=
(8lzys-- - |8lz,) € N*. Obviously, s ~a¢; 1 iff 7(s) = 0 := (0,...,0), and
every term s € T(X1, X,,) that is not &~ 4¢;-congruent to 1 is congruent to a
term in T'(X, X,,).

Lemma 10.3.2 Let s,t € T(X, X,,).

1. s ~aAc1 t Zﬁ’l—)}i‘(S) = 17n(t) ’I:ﬁs zACt'

2. Up(s) e N* —0.

Proof (2) is trivial. The implication “s ®scst = Un(s) = Un(t)” is an im-
mediate consequence of Lemma 10.3.1, and “s a0t = s &40; t7 is trivial.

238 10 Equational Unification

Finally, “t,,(s) = Un(t) = s =act” can be shown as in the proof of the
<«=-direction of Lemma 10.3.1. |

Let n,m >0, s € T(X1, X»), and o be a substitution such that Dom(o) C
Xn and o(z;) € T(X1, Xp) for all z; € X,,. Given ¥,(s) and T (o(x;)) for
all z; € X,,, it is easy to compute T, (co(s)):

(8)lz, = Z |8z, - |o(xi)la, -

Thus, if My, m(0) denotes the n x m matrix whose rows are the vectors

Um(o(z5)), i.e

lo(@)le; -+ |o(21)|om
Mpm(o) == : :)
lo(@n)lz; =+ |0(Zn)|zm
then applying o to s corresponds to multiplying the vector @y, (s) by the
matrix My m(0):
Lemma 10.3.3 Tm(0(8)) = Un(8) - My m(0).
For example, if s := z?x3 and o := {x1 — z273, T2 — i3}, then o(s) =
(zam3)®zizs ~acr xizad, va(s) = (2 1),

M2,3(a)=(g (1) i) and 173(0(3))=(223)=(21)-<g é 1)

10.3.2 ACI-unification

Let S := {s1 ~%¢; t1, ---,5k ~4c; tr} be an elementary ACI-unification
problem, let X, := {z1,...,2,} be the set of all variables occurring in S,
and let o be a substitution. We may (without loss of generality) assume that
Dom(c) C X,, and that there exists m > 1 such that o(x;) € T(Z1, Xim)
for all z; € X,,.

Lemma 10.3.4 The following statements are equivalent:
1. o is an ACI-unifier of S.
2. Un(8i) - Mpm(0) = Un(ti) - Mpm(0) for alli=1,... k.

Proof By Lemma 10.3.1, 0(s;) ®ac1 o(t;) iff Om(0(si)) = Um(o(t;)). Thus,
Lemma 10.3.3 yields the above equivalence. O

10.8 Associative and commutative functions 239

Let My »(S) be the integer matrix whose rows are the vectors 7 (s;) — U, (t;),
i.e. the matrix whose entry at position (4, j) is |s;|z, —|t|z,- The above lemma
can now be reformulated as follows:

Lemma 10.3.5 o is an ACl-unifier of S iff the columns of My m (o) are
(non-negative integer) solutions of the system of homogeneous linear dio-
phantine equations DE(S):

(1 0

Mk,n(s) =

Yn 0
We call DE(S) a system of diophantine equations since the entries of the
matrix My ,(S) are integers, and we are only interested in (non-negative)

integer solutions. The meaning of homogeneous and linear is as in linear
algebra.

Example 10.3.6 The ACI-unification problem S := {z1z2 ~’ 5, 3} cor-
responds to the homogeneous linear diophantine equation

Y1 0
11-2-1y |=]0]. (%)
Y3 0

The substitution o := {z1 — 122, 23 > 1, 3 — 2122} is an ACI-unifier
of S, and it yields the matrix

M3’2(0') =

—_
= o N

whose columns solve (x). Conversely, the solution y; = 1, yo = 3, and y3 = 2
of (x) can be turned into the following ACI-unifier of S:

7:={x1 — 1, T2 — :c:f, T3 > x%}

Obviously, the substitution that replaces all variables x; occurring in an
elementary ACI-unification problem S by 1 is an ACI-unifier of S. This
trivial unifier corresponds to the trivial solution of DE(S), which replaces
all y; by 0. Thus, the decision problem for elementary ACI-unification is
decidable in constant time: just say “yes” without looking at the problem.

Fact 10.3.7 Every elementary ACIl-unification problem has a solution.

In order to obtain a most general ACI-unifier of S, we must determine a
finite generating set for the set of all solutions of DE(.S). In the following, we

240 10 Equational Unification

denote column vectors by v| to distinguish them from row vectors, which we
write as U. By a slight abuse of notation, we write v| € N™ to express that
all entries of the column vector v| are non-negative integers, and we write 0}
for column vectors having only 0 as entry, without explicitly distinguishing
different dimensions in the notation.

Definition 10.3.8 Let M}, be a k X n integer matrix, and let
My -yl =0 (%)

be the system of homogeneous linear diophantine equations induced by M}, ,,.
A finite set V := {v1l,...,v,1} C N" is a generating set for the set of all
(non-negative integer) solutions of (x) iff every element of V solves (*), and
for each v| € N that solves (*) there exist aj, ..., a, € N such that

vl=v1l-a1+ -+ U ar.

Theorem 10.3.9 For every system of homogeneous linear diophantine equa-
tions there ezists a finite generating set, and this set is computable.

We defer the proof of this theorem to Subsection 10.3.4.

Given a finite generating set W := {v1l,...,v.1} for DE(S), we can
construct a most general ACI-unifier of S as follows. Let M, (W) =
(v1l - - vpl) be the matrix that has the vectors v;| as its columns, and let
ow be the substitution satisfying My, ,(ow) = My (W). (Note that, mod-
ulo =40, there exists exactly one such substitution oy for every matrix
M, .(W).)

Theorem 10.3.10 The substitution ow induced by the finite generating set
W of all non-negative integer solutions of DE(S) is a most general ACI-
unifier of S.

Proof Since the columns v;| of M, .(c) = M, (W) are solutions of DE(S),
ow is an ACl-unifier of S by Lemma 10.3.5.

To show that ow is most general, we consider an arbitrary ACI-unifier
T of §. Let My s(7) := (u1l --- usl) be the matrix corresponding to .
By Lemma 10.3.5, the columns u;| of this matrix are solutions of DE(S).
Since W is a generating set for these solutions, there exist ay j,...,a,; € N
such that u;| = vl a1+ -+ vl -ar;. Let A.; be the matrix whose
entries at position (4,j) are the numbers a; ;, and let § be the substitution
corresponding to this matrix, i.e. the substitution that satisfies M, () =
A, . By definition of A, ; we have My (1) = My (ow) - My 5(6), and it is
easy to see that this implies 7(z;) ~ac: 6(ow(x;)) for all z; € X,,. This
shows that 7 is an ACl-instance of ow on X, = Var(S). O

10.3 Associative and commutative functions 241

Example 10.3.11 Let us again consider the ACI-unification problem S :=
{x122 =%y, 3} of Example 10.3.6. In this case, DE(S) consists of the
single equation (1 1 —2)-y| =0]. It is easy to verify that the following is
a generating set for all non-negative integer solutions of this equation:

1 2 0
w={[1], o], [2
1 1 1

This set yields the mgu ow = {1 — 7123, T2 — 717%, T3 — T1T273} of S.
The unifier 7 := {z1 — 1, T2 — 23, 3 — x?} of S yields a matrix with
just one column:

1 1 2 0
Myy(ry=|3|=|1]-14]0]-0+4] 2] 1
2 1 1 1

The substitution § := {z; — 1, 3 — 1, x3 — 1}, which is induced by the
above representation of M3 1(7) as a linear combination of the solutions v;/,
obviously satisfies 6(ow(z;)) ~ac: 7(x;) for i =1,2,3.

Corollary 10.3.12 AC1 is unitary for elementary unification.

AC1-unification with constants is no longer unitary (see Exercise 10.16), but
still finitary. Also, the decision problem for ACI-unification with constants
is no longer trivial, but NP-complete (see Exercise 10.17 for the NP-hardness
result).

10.3.3 AC-unification

An (elementary) AC-unification problem S is an ACI-unification problem
in which the unit 1 does not occur. By Lemma 10.3.2, any AC-unifier of S
is also an AC1I-unifier of S. The converse is not true since ACI-unifiers may
replace certain variables by 1, whereas this is not possible for AC-unifiers.
In the matrix representation of an AC-unifier of S this restriction means
that every row of M, n(o) must contain a non-zero entry. In particular, the
trivial ACI-unifier {z; — 1, ..., £, +— 1} of S is not an AC-unifier. The
decision problem for elementary AC-unification is nontrivial, but not very
hard.

Lemma 10.3.13 The elementary AC-unification problem S is solvable iff
the system of homogeneous linear diophantine equations DE(S) has a solu-
tion in the positive integers.

242 10 Equational Unification

Proof If vy € (N — {0})" is a solution of DE(S), then the corresponding
substitution o (i.e. the substitution satisfying M, 1(c) = v|) is an ACI-
unifier of S by Lemma 10.3.5. Since all entries of v| are non-zero, it is also
an AC-unifier by Lemma 10.3.2.

Conversely, let 0 be an AC-unifier of S, and assume (without loss of
generality) that Dom(o) C X, = Var(S), and that there exists m > 1 such
o(z;) € T(X, Xy,) for all z; € X,,. If we define 6 := {z1 — 1, ..., Ty —
x1}, then 6o is also an AC-unifier of S. The corresponding matrix M, 1(6c)
consists of a single column, which solves DE(S) and has only entries > 0.

O

As an example, we consider the unification problem S := {riz2 ~%, 23}
of Example 10.3.6 as an AC-unification problem. This problem yields the
system of homogeneous linear diophantine equations

Y1 0
(1 1 —2)~ Yo = 0 |. (*)
Y3 0

The solution y; = 1,y2 = 1,y3 = 1 of (%) yields the AC-unifier {z; —
x1, T3 — x1, 3 — x1} of S, whereas the solution y; = 2,y = 0,y3 = 1
yields {x1 + %, zo + 1, 3 > z1}, which is an ACI-unifier of S, but not
an AC-unifier.

Theorem 10.3.14 Solvability of elementary AC-unification problems is de-
cidable in polynomial time.

Proof by reduction to linear programming, which is known to be polynomial:

By the previous lemma, it is sufficient to show that the following problem
is decidable in polynomial time: given a k X n integer matrix A, does the
system of equations

A-yl=0| (i)

have a solution in (N — {0})"? This is equivalent to asking whether the
system of equations and inequalities

A-yt=0, y1>0,...,y,>0 (ii)
has a solution in Z", which in turn is equivalent to asking whether

has a solution in Q" (i.e. a rational solution). This last problem can easily
be turned into a linear programming problem (see Exercise 10.19), which is
solvable in polynomial time [137]. O

10.3 Associative and commutative functions 243

For AC-unification with constants, things are not so rosy: the decision prob-
lem is NP-complete (see Exercise 10.18 for the NP-hardness result).

Now, we consider the problem of computing a complete set of AC-unifiers
of a given AC-unification problem S. Let o be the most general ACI-
unifier of S. An AC-unifier 6 of S is also an ACI-unifier of S, and thus an
ACl-instance of o on Var(S). Nevertheless, o need not be a most general
AC-unifier of S:

1. The most general ACI-unifier ¢ need not be a X-substitution since it
may introduce the unit 1 € ¥; — ¥. Consequently, it need not be an
AC-unifier of S.

2. Even if o is a ¥-substitution, it need not be most general with respect
to AC-instantiation.

The first problem can only occur if S, considered as an AC-unification prob-
lem, is not solvable.

Lemma 10.3.15 S has an AC-unifier iff the most general AC1-unifier of
S is (= ac1-equivalent to) a L-substitution.

Proof 1If the most general ACI-unifier o of S is = 4¢;-equivalent to a X-
substitution ¢’ (i.e. a substitution that does not introduce 1), then o’ is
an AC-unifier of S by Lemma 10.3.2. Conversely, assume that o is not
R scr-equivalent to a X-substitution. This means that o(x) ~4¢; 1 for some
x € Var(S). Consequently, §(o(z)) ~ac: 1 for all substitutions §, which
shows that no ACI-instance of o can be a X-substitution. O

The reason for the second problem is that an ACl-instance of o need not
be an AC-instance of o.

Example 10.3.16 In Example 10.3.11 we have seen that oy = {z; —
T123, T3 > xla:%, x3 +— T1Toz3} is a most general ACI-unifier of S :=
{z129 ~%; 23}. Obviously, ow is a X-substitution, and thus oy is an AC-
unifier of S. The substitution 7 := {z1 — z1, 22 — 23, z3 — z?} is also
an AC-unifier of S, and we have seen that it is an ACI-instance of ow on
Var(S). However, the substitution é := {z1 — 1, 2 — 1, 3 — z1}, which
yields this AC]I-instance relationship, is not a ¥-substitution. It is easy to
see that 7 cannot be obtained as an AC-instance of oy .

The X;-substitution é can, however, be split into the erasing substitution
k := {xz2 — 1} and the Z-substitution ¢ := {z1 — z1, 3 — z1}. Since
6 = §'k, the AC-unifier 7 is an AC-instance of kow.

From a given most general ACI-unifier o of S, we construct a complete set
of AC-unifiers of S by applying all admissible erasing substitutions to o.

244 10 Equational Unification
Definition 10.3.17 Let X and Y be finite sets of variables.

1. The X;-substitution « is called an erasing substitution on Y iff there
exists a set Z C Y such that Dom (k) = Z and k(z) =1 for all z € Z.

2. The erasing substitution « is admissible on X for the X-substitution o
iff k(o (z)) %ac1 1 for all z € X.

Theorem 10.3.18 Let S be a solvable elementary AC-unification problem, o
a most general ACl-unifier of S, X :=Var(S), and Y := ,cx Var(o(z)).
The set

C := {ko | k is an erasing substitution on Y and admissible on X for o}
is a complete set of AC-unifiers of S.

Proof As instances of the ACI-unifier o of S, all substitutions ko € C are
AC1-unifiers of S. By definition of admissibility, they are (= 4¢;-equivalent
to) X-substitutions, i.e. they can be considered as AC-unifiers of S.

To show that C is complete, we consider an AC-unifier 8 of S. Because 6
is also an ACI-unifier of S, and o is the most general ACI-unifier of S, there
exists a substitution é such that 0(z) ~4c; 6(o(z)) for all z € X. We may
assume without loss of generality that Dom(6) C Y. We define the erasing
substitution x on Y as follows:)

k={y—1 | yeY A 6@y)=~ac11}-

For all y € Y such that 6(y) %ac: 1, there exists a Y-term s, satisfying
8(y) ~ac1 sy. Thus, if we define

§:={yrsy | y€Y A 6(y)#aci 1},

then ¢ is a Y-substitution, and it is easy to see that 8(y) ~ac: &' (k(y))
holds for all y € Y. Obviously, this implies 6(z) ~4¢; §'(k(o(x))), and thus
it only remains to be shown that is admissible for o on X. Assume to
the contrary that x(o(x)) ~ac;s 1 for some z € X. However, this implies
0(z) ~acs 8'(k(o(x))) ~acs 1, which contradicts our assumption that 6 is a
Y-substitution. O

Corollary 10.3.19 AC is finitary for elementary unification.

Proof Since the set Y = Uzeyar(s) Var(o()) is finite, there are only finitely
many different erasing substitutions on Y. O

As an example, again consider the most general AC1I-unifier

2 2
ow = {z1 — 2123, T2 — T1T3, T3 > T1T2T3}

10.83 Associative and commutative functions 245

of Example 10.3.11. There are 23 = 8 erasing substitutions (corresponding to
the subsets of Y := {x1,z2,23}), of which 5 are admissible (corresponding
to the sets 0, {z1}, {z2}, {z3}, and {z2,z3}). This yields the following
complete set of AC-unifiers of S = {z1z9 ~',; 23}:

{z1— xlx%, To xlzg, X3 > T1T2T3},

{z1 — 23, T2 > 23, x3 — T3},
{z1 — 1, T2 > 1173, T3 > T1T3},
{z1 > 2123, T2 > 71, x3 > T1T2},
{T1—>21, @} T, XTI T1}

10.3.4 Homogeneous linear diophantine equations

Let M}, be a k X n integer matrix, and let
M- yL =01 (*)

be the system of homogeneous linear diophantine equations induced by My ,,.
First, we show by a non-constructive argument that there exists a finite
generating set for the non-negative integer solutions of (). Then, we turn
to the problem of how to compute such a set.

Let > denote the component-wise order on N” induced by > on N, and
let > denote its strict part (i.e. ul > v| iff u| > v| and u| # v}).

Lemma 10.3.20 The component-wise order > on N™ is a well-partial order.

Proof This is an immediate consequence of Lemma 5.4.5, since the usual
order > of natural numbers is obviously a wpo. O

Definition 10.3.21 A solution v € N” of (*) is a minimal nontrivial
solution iff v| # 0y, and v| > wu| implies u| = 0y for all solutions u| € N
of ().

Theorem 10.3.22 The set of all minimal nontrivial solutions of (*) is
finite, and it is a generating set for the mon-negative integer solutions of

(%)

Proof (1) Obviously, the set of all minimal nontrivial solutions of (x) is an
anti-chain w.r.t. >, i.e. a set of pairwise incomparable elements. Thus, it
must be finite since otherwise it would yield an infinite bad sequence.

(2) We show by well-founded induction on > that every (non-negative
integer) solution of (*) can be obtained as a non-negative linear combination
of the minimal nontrivial solutions of (x). Obviously, the trivial solution 0|
can be obtained as such a linear combination (where all coefficients are 0).

246 10 Equational Unification

Thus, assume that w| is a nontrivial solutions of (x). If w| is minimal
nontrivial, then we are done since u| = ul - 1. Otherwise, there exists a
nontrivial solution v1| such that u| > v1|. Either v;| is minimal nontrivial,
or there exists a nontrivial solution ve| such that vi| > vsl, etc. Since >
is a wpo, there cannot be an infinite descending >-chain, which shows that
there exists a minimal nontrivial solution v| such that u| > v|.

Consequently, u|’ := u|—v| is a non-negative integer solution of (*), which
obviously satisfies u| > u|’. By induction, we know that u|’ can be obtained
as a non-negative linear combination of the minimal nontrivial solutions of
(%), and thus also u| = ul’ + v|. O

This proof does not show how the (finite) set of minimal nontrivial solu-
tions of (x) can be computed. One possibility for solving this problem is
to determine a bound for the size of the components of minimal nontrivial
solutions of (*). Assume that we can compute a number B € N such that
vl € {0,1,..., B}" holds for all nontrivial minimal solutions v| of (*). Then
we can compute the set of all nontrivial minimal solutions of (x) as follows:
simply enumerate all vectors in {0, 1,..., B}", test whether they are solu-
tions of (x), collect all these solutions and then remove the non-minimal
ones.

In the following, we describe one method for obtaining a (fairly good)
bound.

Definition 10.3.23 For an integer (column) vector x| € ZF we denote its
components by z1,...,Zx, and define

k
lzall := Dl
i=1

where |z;| denotes the absolute value of the integer x;. For a k x n integer
matrix My, 1= (ml(l) :cl(")) we define

1M]] := max{||lz1P|| | 1 < j < n}.

Theorem 10.3.24 Let My, be a k X n integer matriz, and let x| € N" be
a minimal nontrivial solution of My, -yl = 0| (x). Then

k
ol < (14 [[Mgall)® -
Before proving the theorem, let us first note two obvious facts:

1. Since x| € N”, the inequality ||z||| < Bp := (1 + ||Mk,n||)k implies that
every component x; of x| satisfies x; < By.

10.8 Associative and commutative functions 247

2. If ||z1]| = p for a vector x| € N”, then z| can be obtained from 0| by
adding p unit vectors. We denote the unit vector that has 1 in position
i and 0 in all other positions by e}(®.

The intuitive idea underlying the proof of Theorem 10.3.24 is as follows.
Assume that z| € N" is a minimal nontrivial solution of (%) such that
p = ||zi]| > Bo. We go from 0| to z| by adding appropriate unit vectors,
and take care that we don’t stray “too far” from the straight route to x|,
which is the line (in R™) from 0y to z| (see Fig. 10.2). Since every point on
this line is a solution of (*), this makes sure that the intermediate vectors
y1U) € N” reached by adding unit vectors have the property that My -yt @)
is not “far” away from 0). This in turn makes sure that there cannot be
“many” different vectors My, - y1). Since p is large (larger than By), we
can then conclude that there exist £ < ¢ such that My, 1O = My r, - y1 (€,
Consequently, yl(el) — y1® is a nontrivial non-negative integer solution of
(%) that is smaller than x|, which contradicts the minimality of z].

zl

7

]

Fig. 10.2. An illustration for the proof of the theorem.

To make this intuition more precise, we must introduce some notation.
Let [0,1] denote the interval of real numbers between 0 and 1 (including 0
and 1). For a vector y| € R", we denote the unit cube with lower left corner
yL by Cyy, ie.

n
Cy, = {21 eR"|zl=yl+ Zel(i) - r; for some r; € [0, 1]} ,

i=1
and the line between 0] and y| by [01,y1], i.e.
(04, yy] :=A{ys-7|r€[0,1]}.
Lemma 10.3.25 Let x| € N® and p := ||zi||. There exist sequences of
vectors y1@, ..., y1® € N* and 21©, ..., 21® € R™ such that

1. yl(o) =0 < yl(l) < e < yl(P) =z,
2.yl = 4 @ 4 €102 for some j;, 1 < j; < m,

248 10 Equational Unification
3 21 e Cyl(i) N [0y, z1].

Proof We define the required sequences by induction. In the base case, we
set yl(o) := 0y and z,©@ := 0. Now, assume that 0 < £ < p, and that we
already have vectors y1(9,...,y1® and 2/, ..., 21 satisfying

y1 @ =0 <y® <. <y® < g,

and parts (2) (for 0 < ¢ < £) and (3) (for 0 < i < £) of the lemma. The
elements of C, | N[01, z1] are the vectors zi-r =35, el® . z; -7 such that
r€[0,1] and, fori=1,...,n,

yge) <zi-r< yge) + L (%)

Let r; be the largest element of [0, 1] that satisfies (**). Such a real number
re exists since G N [01, 1] is nonempty (it contains z/(9)). In addition,
since yl(z) < x|, it is easy to see that there exists jy, 1 < jy < n, such that
Tj, T = y§f) + 1. We define y (&) := 4O 4 ¢,02) and 2z, D) = z| . .
Intuitively, the appropriate vector z|(¢+1) can be found by considering the
intersections of the faces of the unit cube Cy 1® with the line [0}, z|], and
then taking the point that is nearest to x| (see Fig. 10.3).

C o
vl 1 (e4)

y1@ yuet

Fig. 10.3. How to find z (¢+1),

By construction, z|¢+1) e C,e+n N[0, z1]. In addition, y1&t) < g since

y](fH) = yJ(-f) +1=uxj-ry < xj,. Since ||zl|| = p, and y1tD) is obtained as

the sum of £+ 1 unit vectors, we know that y|¢*) =z if (+1=p. O

Lemma 10.3.26 If x| € N" is a nontrivial solution of () such that p :=
|lzt]| > Bo, then x| is not a minimal nontrivial solution of (*).

10.8 Associative and commutative functions 249

Proof Let y1© . y1® e N*and 21, ..., z/P) € R be the two sequences
of vectors satisfying 1-3 of Lemma 10.3.25. We define di(®) := 2,0 — 4, (®
for £ = 0,...,p. Since 21 e [0},zl], it is a (real) solution of (x), and
since 21 € Cy |@, We know that 0 < d§‘) < 1. Consequently, we obtain the
following identities for the absolute value of the ith component of Mk,n-dl(e):

(M - di®)i] = [(Mp - 209)i = (Mg - 91 ©)i] = |(My - 91)i

Let a;; denote the entry of My, at position (4,). Since 0 < dge) <1, we
can deduce that (Mg, - y1®); is an integer satisfying

= Y aigl € M@ <> agl
1<j<n 1<j<n
a,,;<0 a,,,>0

Thus, for all i there are at most 1431 <<p, |@s,;| < 14| Mk, .|| possible values
for (Myn, -yl(e))i. Since p > By = (1 + ||Mk,n||)k, thereexist 0 < £ < ¢ <p
such that My ,, - yl(e) =Myp- yl(e'). This implies that yl(el) —y1® e N is
a nontrivial solution of (x) that is smaller than z| € N™. O

This concludes the proof of Theorem 10.3.24.

Exercises

10.14 Let C := {f(z,y) = f(y,2)}, R :={f(f(2,9),2) — f(=, f(y,2)}, and
S:={f(z, f(y,2)) — f(f(z,y),2)}. Show that the relations ~co—g
and ~¢ o —g do not terminate.

10.15 Compute the mgu of z;z2 z?AC'I T3T4.

10.16 Show that the ACI-unification problem (with constants a, b)

~7
(L‘l.’Ez ~AC1 ab

has a minimal complete set of ACI-unifiers of cardinality 4.

10.17 Show that the decision problem for AC1I-unification with constants
is NP-hard. (Hint: use a reduction of positive 1-in-3-SAT where the
clause p V ¢ V r is translated into the equation z,z,z, ~%; a.)

10.18 Show that the decision problem for AC-unification with constants is
NP-hard. (Hint: use a reduction of positive 1-in-3-SAT where the
clause p V ¢ V r is translated into the equation z,z4z, ~; abb.)

10.19 An instance of the linear programming problem is given by an r X s
integer matrix B, a row vector ¢ € Z*, a column vector d| € Z", and

250

10.20
10.21

10.22

10.23

10 Equational Unification

an integer b € Z. The question is whether there exists a solution
yl € Q° of the inequalities

B-y <di, c-yL>b.

Show that the problem (iii) in the proof of Theorem 10.3.14 can be

turned into an instance of the linear programming problem. (Hint:
define ¢:=0, b:= 0,

0
A 0
B = A and d| := EEE
-E,
-1

where E,, denotes the n X n unit matrix (with 1 in the diagonal and
0 in all other positions), and the first 2k entries of d| are 0, and the
remaining n entries are —1.)

Compute a complete set of AC-unifiers of z1xo z?AC T3T4.

Let 01 and o9 be AC-unifiers of the AC-unification problem S. Show
that the substitution

{z — o1(x) *x02(x) | * € Dom(o1) UDom(o2)}

is also an AC-unifier of S.

Let S be a solvable AC-unification problem, W the set of all minimal
nontrivial solutions of DE(S), and oy the most general ACI-unifier
of S induced by W (see Theorem 10.3.10). Show that the complete set
of AC-unifiers C obtained from oy with the help of Theorem 10.3.18
is a minimal complete set of AC-unifiers of S.

Is the statement in the previous exercise also true if we take an ar-
bitrary most general ACI-unifier of S for constructing the complete
set C?

10.4 Boolean rings

Boolean algebra (the theory of A, V and —) is fundamental for mathemat-
ics and computer science because it formalizes propositional logic, digital
circuits and sets. Boolean ring theory formalizes the same concepts in the
language of ring theory. There are two constants 0 and 1, and two operations

10.4 Boolean rings 251

+ and * subject to the following set of identities:

T+y = y+uz, TxYy = Y*,
(z+y)+2z =~ z+(y+2), (xxy)*xz = zx*(yx*2),
B:= z+z = 0, TxT = T,
0+x =~ =, Oxz = 0,
zx(y+2) = (zxy)+ (zx*2), lxz ~ x

As is customary in ring theory, * binds more tightly than +, and we fre-
quently drop * altogether, e.g. we write zy instead of x x y. Because both
+ and * are associative, many further parentheses become redundant.

Two consequences of B worth keeping in mind are

zx(x+1)=p0,
r~py & z+y~pg0.

Because many of our arguments will be semantic, let By be the two-
element Boolean ring with carrier 2 := {0,1} where * and + are “and” and
“exclusive or” (i.e. multiplication and addition modulo 2). It is easy to see
that Bs is indeed a model of B. In fact, it is the initial model of B, i.e. every
ground term is equivalent to 0 or 1 modulo B (see Exercise 10.24). Note
that the constants 0 and 1 coincide with the values 0,1 € 2. Hence we take
the liberty of treating elements of 2 as ground terms.

It is easy to translate between Boolean algebra and Boolean ring theory:

TAYy — Txy, T*xYy — TAY,
ZVy > cHy+zry, oty = (@A-g)V(-zAyY),
-z — 14z

We prefer to work with + and * because the identities in B are close to those
of ordinary arithmetic and more pleasant to use than their counterparts for
Boolean algebra. In particular, terms have a very convenient normal form,
the polynomial form. In the sequel all terms are elements of T'(X, V') where
¥ = {0,1, +, *}. Including free constants merely complicates technicalities.
Therefore we ignore them in this section.

10.4.1 Polynomials

We call a product of distinct variables a monomial and a sum of distinct
monomials a polynomial. We compare monomials and polynomials modulo
associativity and commutativity of + and *. For example, we do not distin-
guish between zy + z and z 4 yz. More abstractly, we can view a monomial
as a set of variables and a polynomial as a set of monomials. Every term

252 10 Equational Unification

can be transformed into a unique =~ pg-equivalent polynomial, its polynomial
form. This is the Boolean ring counterpart of the conjunctive/disjunctive
normal form of Boolean algebra terms. To accommodate 0 and 1 we iden-
tify 0 with the empty polynomial and 1 with (the polynomial containing
only) the empty monomial. The polynomial form of a term is obtained
in the same way as with polynomials over R, except that one also applies
zxx ~pgx and £ +x ~p 0. These two rules are responsible for the absence
of coefficients and exponents in our polynomials. The polynomial form can
be computed recursively as follows:

x,0,1: Every variable and the constants 0 and 1 are polynomials already.

t1 + t2: Let p1 and py be the polynomial forms of ¢; and t3. The polynomial
form of ¢; + to is obtained from p; + p2 by cancelling all equivalent
monomials, i.e. removing both occurrences of the same monomial in
p1 and p2 (z + z =g 0).

t1 xto: Let p=m1+---4+m; and ¢ = ng +- - - +ny be the polynomial forms
of t1 and t2.The polynomial form of ¢; * t5 is obtained by cancelling
all equivalent monomials from the sum

(my*ny+---+myxng)+--+ (Mg xng+---+mg*ny)

obtained by multiplying out the product p * q. The product m xn
of two monomials m = z1---x, and n = y; - - - ys is the monomial
obtained by removing repeated occurrences of the same variable from

Ty Ty Ys (T xx ~p T).

Note that certain simplifications are implicit in the representation of 1 and
0 as the empty monomial and polynomial. For example, the product of the
two monomials 1 and x is the monomial x because 1 is empty.

The polynomial form of ¢ is denoted by t|p. Because each step of the
algorithm is justified by identities in B, we conclude that the following
holds:

Fact 10.4.1 t=ptlp.

The following is an example of the step by step computation of the polyno-
mial form:

~p (yxrz+yxy+lszc+1lx*xy)+ay
~p (yr+y+z+y)+ay
~p (yr+z)+zy ~p x.

(y+1) x(z+y)+zy

10.4 Boolean rings 253

It turns out that two terms are = p-equivalent iff they have the same
polynomial form. The proof of the <=-direction is straightforward:

S,Lp = tlp = S =B Slp = th ~pt.
We prove the other direction by means of a semantic lemma.
Lemma 10.4.2 B =s~t = slp=tlp.

Proof We show the contrapositive. Assume that s|p # t|p. Hence there is
a monomial in one of the two normal forms which is not in the other. Let
m be such a monomial which is of minimal length. For concreteness assume
m is in s| p. Therefore s|p is of the form M + m + G and t|p of the form
M + H, where M contains the monomials that are shorter than m, and G
and H contain the remaining monomials, i.e. those monomials different from
and not shorter than m.

Now define a mapping ¢ : V — 2 which assigns 1 to all variables in m and
0 to all other variables. Let @ : 7 (X, V) — B2 be the homomorphic extension
of ¢. This means @(m) = 1. Because m is of minimal length, all monomials
in G and H must contain some variable not contained in m. Therefore
@(m’) = 0 for all monomials m’ in G and H, and hence $(G) = @¢(H) = 0.
Thus we can show that $(s) # @(t) which yields Bs = s # t:

@(s) = @(slp) =@(M)+p(m)+5(G) =p(M) +1
@(M)=¢(M)+p(H) = 2(tlp) = &(t)- 0
Now we can easily obtain a fundamental theorem about Boolean rings:

Theorem 10.4.3 The following statements are equivalent:

1. s~pt,

2. slp=tlp,
3. By Es~t.

Proof Lemma, 10.4.2 proves 3 = 2, the implication 2 = 1 was already dealt
with above, and 1 = 3 follows because s ~p t means s = t holds in all
Boolean rings, in particular in Bs. O

In particular, this shows that ~p is decidable, either by comparing polyno-
mial forms (which are computable), or by testing semantic equality in B
(which is decidable because B is finite).

10.4.2 Unification

Unification in Boolean rings (Boolean unification) means solving equa-
tions of the form s ~% t. (Exercise 10.26 justifies the restriction to a single

254 10 Equational Unification

equation.) As a consequence of Theorem 10.4.3 we obtain that Boolean
unification is closely related to equation solving in Bs:

Lemma 10.4.4

1. Every solution of s =" t in By can be viewed as a B-unifier.
2. Ifs z}; t has a unifier then s =’ t has a solution in Ba.

Proof (1) Let ¢ : V — 2 be a solution of s = t in By, i.e. $(s) = $(t).
Because we identify the constants 0 and 1 with their respective values 0 and
1 in By, we can also view ¢ as a mapping to ground terms, in which case
we denote its homomorphic extensions by ¢ : T (X, V) — 7(%, V). Because
any homomorphism 1 : 7 (X, V) — By must be the identity on 2, i.e. it has
to map the terms 0 and 1 to their respective values 0 and 1 in Bs, we obtain
@ = Y@ (both sides agree on V). Thus we have ¥(3(s)) = @(s) = @(t) =
Y(@(t)) for every ¢ and hence By = @(s) ~ @(t). Theorem 10.4.3 yields
P(s) ~p @(t), i.e. the solution ¢, when viewed as a substitution, is a unifier.

(2) Let o be a unifier of s =p t, i.e. o(s) ~p o(t). Theorem 10.4.3
yields By = o(s) =~ o(t) and hence in particular $(o(s)) = @(o(t)) where
¢ :V — 2 is arbitrary. Hence o : V — 2 is a solution in Bs. |

It turns out that Boolean unification is unitary, a rare property. Because
z=py < x+y~p0, we can transform every unification problem into the
form ¢ z}; 0, which is the standard form from now on. For example, xxy ~p
0 has an mgu o := {x — x*(1+y)}. Because o(z*y) = (zx(1+y))*y ~p 0,
o is a unifier. It is less obvious that ¢ is most general.

We will now study two unification algorithms, Lowenheim’s formula and
successive variable elimination, which are based on completely different prin-
ciples.

10.4.3 Lowenheim’s formula

Léwenheim [163] discovered the following amazing formula for turning any
unifier into an mgu. Given a unifier 7 of t &% 0, i.e. 7(t) ~p 0, the substi-
tution o defined by

o(x):=t+1)xz+tx71(x)

for all z € Var(t) and o(z) := « for all z ¢ Var(t), is an mgu. The following
lemma is the key to proving that o is a unifier:

Lemma 10.4.5 If o(z) = (s+1) x01(x) + s xo2(x) for all x € Var(t), then
o(t) =g (s + 1) xo1(t) + s * o2(t).

10.4 Boolean rings 255

Proof by induction on t. The base cases (variable, 0, 1) are trivial.
t =t1 + to: Using the induction hypothesis we can easily verify that

ot) = o(t1)+o(t2)

B ((s+1)x01(t1) + s*02(t1)) + ((s + 1) * o1(t2) + s * 02(t2))

B (s+1)*(01(t1) + 01(t2)) + 5 * (02(t1) + 02(t2))
(s+1)*0(t) + s*o(t).

LERY

t =t; xty: Using the induction hypothesis we can easily verify that

o(t) = o(t1)*xo(ta)

B ((s+1)x0o1(t1) + s*02(t1)) * ((s + 1) * o1(t2) + s * 02(t2))

B (8+1)*Ul(tl)*0’1(t2)+8*0’2(t1)*0’2(t2)

= (s+1)*0(t)+sxa(t). O

[aRY

Because Lowenheim’s o has exactly the form required by the above lemma
(define o1(x) := x and oa(x) := 7(z) for all x) we obtain o(t) ~p (t + 1) *
t+t*7(t) ~p 0+t*0~p 0, ie. o is a unifier of ¢ ~% 0. It is even easier to
show that o is most general by showing that it has a yet stronger property:

Definition 10.4.6 A unifier o of t =g 0 is a reproductive unifier if
7(0(z)) =p 7(z) for every unifier 7 of t ~p 0 and every z.

Observe that a reproductive unifier is an mgu in a strong sense: every other
unifier is a B-instance of it, not just on Var(t) but on all variables.
Let T be a unifier of t ~% 0. If x € Var(t) then

T(o(z)) = 7(t+1)*xz+t*7(x))
~p (7(t) +1)*7(z) + 7(t) * 7(7(z))
~p (0+1)x7(z)+0x7(r(z)) =B 7(z),

and if z ¢ Var(t) then o(z) = z and hence 7(o(z)) ~p 7(z) is trivial. Thus
o is a reproductive unifier and hence an mgu.

Example 10.4.7 The equation zy z?B 0 has three ground solutions:

z=0,y=0: o(z) = (zy+1)*xz+zyx0~pz+zy,
o(y) = (@y+1)*xy+ayx0~pzy+y.
z=0,y=1 o(z) = (zy+1l)*xz+zy*x0~pz+zy,

oly) = (zy+1)*xy+zyxl~py.
z =1,y =0: symmetric to z =0,y = 1.
We obtain three different mgus, depending on which ground solution we use.
Some mgus are simpler than others: the first mgu replaces both = and y,
whereas the other two are the identity on x or y.

256 10 Equational Unification

In order to turn Lowenheim’s formula into an algorithm, we still need to
find a unifier 7 to start from. Fortunately, we can resort to truth tables
at this point: simply try all possible assignments ¢ : V' — 2 and check if
@(t) = 0. There are only finitely many relevant ¢ because the value of ¢
outside Var(t) is immaterial. Lemma 10.4.4 shows that a solution ¢ is a
unifier and guarantees that this search finds a unifier if one exists.

10.4.4 Why Lowenheim’s formula works

The proof of Léowenheim’s formula is surprisingly painless, but at the same
time quite mysterious. Fortunately, there is a simple intuitive explanation,
if we adopt a semantic point of view: we reduce Boolean unification to
equation solving in Bs. This is facilitated by some new notation. For the
rest of the subsection let ¢ be a fixed term and let Var(t) = {z1,...,z,}.

We can view a term ¢ as a Boolean function of type 2" — 2 by defining
t(b,) := @(t), where b, € 2" and @ : T(%,V) — B; is the homomorphic
extension of the mapping x; — b;. We emphasize the functional nature of ¢
by writing t(Z7,).

Because the effect of a substitution ¢ on t depends only on u; := o(z;) for
i =1,...,n, we can write o as the n-tuple (ui,...,u,). Emphasizing the
functional nature of the u;, this becomes (u1(Tg), - - -, un(Tk)) (Where {Ux} is
the set of all variables in the w;), which we abbreviate to U, (7k)-

So much for the notation. The real reason why Lowenheim’s o works
is that in B the term (z + 1) * y + = * z behaves like a conditional: if
z = 0, it evaluates to y, if x = 1, it evaluates to z. Hence we can rephrase
Lowenheim’s o in By as follows:

o(z;) = if t =0 then z; else 7(x;).

We define a; := 7(x;) and assume for simplicity that a; € 2. Using the
above vector notation, o becomes

Un(Ty) := if t(Z,) = 0 then T, else G,

where we have extended the conditional to vectors, a purely syntactic abbre-
viation. Now it is apparent that (b, is a ground unifier for every b, € 2
it evaluates either to by, if that is a unifier already, or to the default unifier
@p,. Therefore T, (Z,) is a reproductive solution:

Definition 10.4.8 An n-tuple of terms %, (Z,) is a reproductive solution
of t(Z5) ~% 0 if for all b, € 2"

10.4 Boolean rings 257

1. t(Tn(b,)) =0 (o is a solution),
2. t(by) =0 = U,(by) =b, (o is reproductive).

Theorem 10.4.9 Every reproductive solution is a reproductive unifier.

Proof We claim that if %,(%;) is a reproductive solution of t(Z;) ~% 0,
then the substitution o, which maps x; to u; and is the identity everywhere
else, is a reproductive unifier of ¢ “?B 0. Because %, is a solution, we
have B2 | t(u,) ~ 0 and hence, by Theorem 10.4.3, o(t) = t(u,) =B 0,
i.e. o is a unifier. To show that o is reproductive, let § be a unifier of
t ~5 0. Define 3,(%%) := (6(z1),-..,6(zs)). From 6(t) ~p 0 it follows
by Theorem 10.4.3 that By |= 6(t) =~ 0 and hence that t(3,(bx)) = 0 for
all by € 2*. Because 7, is reproductive, this implies %, (55 (bx)) = 3n(bx)
for all b € 2*. By definition of |= this means By | u;(3;) ~ s; and

hence, by Theorem 10.4.3, u;(3;) ~p s; for i = 1,...,n. Thus we have
8(o(zi)) = 6(u;) = ui(3n) =B s; = 6(z;), and 6(o(z)) = §(z) for all other
variables zx. O

The correctness proof given in Subsection 10.4.3 is purely syntactic, which
is why it needs an additional lemma. Reinterpreting Lemma 10.4.5 in the
light of this subsection, we find it expresses the following transformation
rule:

t(if p then T, else §,) ~p if p then t(T,) else (V).

10.4.5 Successive variable elimination

The idea of this unification algorithm is to reduce a unification problem
t %?B 0 to one t/ zj?g 0 by eliminating (at least) one variable from ¢, so that
an mgu of ' &% 0 can be turned into an mgu of t =% 0.

Every term t can be written as « x r + s so that ¢ Var(r,s) C Var(t).
For example, you can split the polynomial form of ¢ into two sets of mo-
nomials, those that do contain x (r;) and the rest (s). Now r is the result
of removing every occurrence of x from r,. This simple observation is the
basis of successive variable elimination.

Theorem 10.4.10 Let t ~p = xr + s such that x ¢ Var(r,s) and define
t':=(r+1)x*s.

1. Every unifier of t % 0 is a unifier of t' ~% 0.

2. If o is a reproductive unifier of t' ~p 0 and x ¢ Dom(o), then

od=cU{z—z*(o(r)+1)+0(s)}

is a reproductive unifier of t ~p 0.

258 10 Equational Unification

Proof (1) Let 7 be a unifier of ¢ ~% 0 and hence 7(z) * 7(r) + 7(s) =p 0.
Multiplication by 7(r)+1 yields (7(r) + 1) x7(s) =g 0, i.e. 7 is also a unifier
of (r+1) x s ~5 0.

(2) Let o be a reproductive unifier of (r+1)*s a5 0. It is easy to calculate
that o’ is a unifier of t &~} O:

d(t) =p o'(@)*xd'(r)+d'(s) = (zx*)+ 1) +a(s)) xa(r) + a(s)
~p o(s)xa(r)+o(s) =B o((r+

Now we show that o’ is also reproductive. Let 7 be a unifier of t ~} 0.

As we saw above, this implies that 7 is a unifier of ¢ ~% 0 and hence,

because o is a reproductive unifier, 7(o(y)) ~p 7(y) for all y. Therefore

7(0'(y)) = 1(0(y)) =B 7(y) if y # . Otherwise

7(0'(x)) = 7(x*(o(r) + 1) +0a(s)) = 7(z) * (1(a(r)) + 1) + 7(a(s))
~p 7(z) * (7(r) + 1) + 7(s) =B 7(x) * 7(r) + 7(x) + 7(3)
~p 7(t) + 7(z) =p 7(z). a

This theorem justifies an obvious recursive unification algorithm which re-
duces t ~5 0 to t ~% 0. Termination is guaranteed because Var(t') C
Var(t) (provided we have chosen z, r and s sensibly, i.e. z € Var(t) and
Var(r,s) C Var(t)). The base case Var(t) = 0 is trivial: if t ~p 0 then the
identity substitution is a reproductive unifier, and if ¢ ~pg 1 then there is
no unifier. Finally note that the condition z ¢ Dom/(o) is always satisfied
because the unification algorithm returns a unifier o such that Dom(o) C

Var(t)).

Example 10.4.11 Solving z * y z}; 0 by eliminating z leads to r = y and
s = 0 and the new equation ((y+1)*0) ~% 0. In order to eliminate the next
variable, we compute the polynomial form of (y + 1) * 0, which is simply 0.
Therefore the identity substitution is an mgu of ((y + 1) * 0) ~} 0. Hence
an mgu of z+y ~5 0is {x > z*(r+1)+s ~p z*(y+1)}, which is also one
of the mgus obtained by Lowenheim’s formula (see Example 10.4.7). This
example demonstrates that more than one variable may disappear in each
step: eliminating x also eliminated y.

A slightly more interesting example is £+y+xy zj?g 0. Eliminating x using
r:=y+1and s := y yields the new equation y ~% 0 since ((r+1)*s)|p = y.
Eliminating y from this equation yields 0 ~} 0 since the polynomial form
of (1 + 1) %0 is 0. The identity substitution is an mgu of 0 ~% 0, and
thus {y — y*x(1+1)+ 0 ~p 0} is an mgu of y z"'B 0. Consequently,
{—~2zx(0+1+1)+0~p 0, y+— 0} is an mgu of the original equation,

10.4 Boolean rings 259

which shows that the algorithm has correctly concluded that = + y + zy,
which expresses “or”, can only be 0 if both z and y are 0.

10.4.6 Complexity

It is well-known that the problem of deciding whether a Boolean term ¢ is
satisfiable, i.e. whether there exists an assignment ¢ : V' — 2 such that
@(t) = 1, is NP-complete [95]. Therefore the problem of deciding if ¢ ~% 0
has a unifier is also NP-complete because the satisfiability question can be
reduced to it in constant time according to Lemma 10.4.4: t is satisfiable iff
t+ 1 ~p 0 has a solution in B iff t + 1 =g 0 has a unifier.

Of course we are really interested in the problem of finding a (most gen-
eral) unifier, rather than just determining if one exists. The former problem
is clearly no easier than the latter, and hence it is unlikely that a polynomial-
time Boolean unification algorithm exists.

Lowenheim’s method has time complexity O(s(n) + n), where n is the
size of ¢, s(n) is the time to find a unifier 7, and +n is the overhead for
substituting 7 into the formula for o. Because we can restrict the search for
T to ground substitutions of 0 and 1, it reduces to the problem of finding
a satisfying assignment for a Boolean term, again a problem for which no
polynomial- but only exponential-time algorithms are known.

The time complexity of successive variable elimination is likewise expo-
nential, although this is more complicated to show, because the term ma-
nipulations are more involved. Hence we do not go into the details.

10.4.7 Boolean unification in ML

We present a simple implementation of successive variable elimination. Vari-
ables are implemented as integers, terms as polynomials:

type monomial = int list;

type polynomial = monomial list;
Note that this means the monomial [] is 1, the polynomial [] is 0, and the
polynomial [[]1] is 1. Monomials and polynomials have a unique represen-
tation because variables are ordered.

(* ordVar: int * int -> order *)

fun ordVar(i,j:int) = if i=j then EQ else if ©j then GR else NGE;
To guarantee uniqueness, monomials are represented as ascending lists of
variables and polynomials as ascending lists of monomials. Monomials are
compared lexicographically. We have chosen the lexicographic extension
>rer Which we have called Lez in ML (see Exercise 2.27). This means that

260 10 Equational Unification

1 + x2 + 122 + 1 is represented by [[1,[1]1,[1,2]1,[2]] as opposed to
(0J,[1]1,[2],[1,2]], had we chosen >}, . This simplifies matters below
marginally.

Much more compact representations of Boolean terms are possible, but
they require more sophisticated data structures [35]. '

A straightforward implementation of addition and multiplication of mo-
nomials and polynomials is shown in Fig. 10.4. It relies on the fact that
monomials and polynomials are ordered.

(* addPP: polynomial * polynomial -> polynomial *)
fun addPP(p,[1) = p
| addPP([1,q) = ¢
| addPP(m::p,n::q) = (case Lexr ordVar (m,n) of
GR => n::addPP(m::p,q)
| EQ => addPP(p,q)
| NGE => m::addPP(p,n::q));

(x mulMM: monomial * monomial -> monomial *)
fun mulMM([1,n) = n
| mulMM(m,[1) = m
| mulMM(a::m,b::n) = (case ordVar(a,b) of
EQ => a::mulMM(m,n)
| GR => b::mulMM(a::m,n)
| NGE => a::mulMM(m,b::n));

(* mulMP: monomial * polynomial -> polynomial *)
fun mulMP(m,[1) = []
| mulMP(m,n::p) = addPP([mulMM(m,n)], mulMP(m,p));

(* mulPP: polynomial * polynomial -> polynomial *)
fun mulPP([]1,p) = []
| mulPP(m::p,q) = addPP(mulMP(m,q), mulPP(p,q));

Fig. 10.4. Polynomial arithmetic.

Substitutions have their usual association list representation:

type subst = (int * polynomial) list;

Application of substitutions to monomials and polynomials is implemented
using polynomial arithmetic:

(* substM: subst * monomial -> polynomial *)
fun substM(s,[1) = [[1]
| substM(s,i::m) = if indom i s then mulPP(app s i, substM(s,m))
else mulMP([#, substM(s,m));

(* substP: subst * polynomial -> polynomial *)
fun substP(s,[1) = []
| substP(s,m::p) = addPP(substM(s, m),substP(s,p));
The functions indom and app were already defined in Section 4.7.
An implementation of successive variable elimination is shown in Fig. 10.5.
It is a direct translation of Theorem 10.4.10. Because terms are represented

10.4 Boolean rings 261

by polynomials, the test ¢t ~p 0 can be implemented by pattern matching
with [1, and the test ¢t =g 1 by pattern matching with [[1].

exception BUnify;

fun bu [] = []
| bu [[1] = raise BUnify
| bu t =
let val (z,(r,s)) = decomp t
val r1 = addPP([[1]1,7)
val v = bu(mulPP(rl,s))
val riu = substP(u,r1)
val su = substP(u,s)
in (z, addPP(mulMP([z] ,r1u),su)) :: u end;

Fig. 10.5. Successive variable elimination.

If the argument to bu is neither 0 nor 1, decomp decomposes ¢ into x*7+ s:
decomp picks out the first (and hence smallest) variable z, and decomp?2
computes r and s:

(* decomp2: int * polynomial * polynomial * polynomial
-> polynomial * polynomial *)
fun decomp2(_, [0, r, 8) = (r,9)
| decomp2(z, (y::m)::p, 7, 8) =
if z=y then decomp2(z, p, M[m], s) else (r, s@(y::m)::p);

(* decomp: polynomial -> int * (polynomial * polynomial) *)
fun decomp ([1::(z::m)::p) = (z, decomp2(z,p,[ml,[[11))
| decomp ((z::m)::p) = (z, decomp2(z,p,[ml,[1));
Note that decomp?2 relies on the fact that polynomials are ascending w.r.t.
>rer because it stops decomposing once it has found a monomial which
does not start with = (and hence does not contain), assuming that the
remaining monomials do not contain x either.

Exercises

10.24 Show that ¢t =g 0 or t ~g 1 holds for every ground term t¢.
10.25 Solve the following equation using both Léwenheim’s formula and
successive variable elimination.

c+y+z+zy+x2z+yz z?B 0.

10.26 Show that the unification problem {¢; z?B 0,...,ty z?B 0} has the
same set of unifiers as the equation (t; + 1) * -+« x (t, + 1) =5 1.

10.27 The powerset of a set S can be regarded as a Boolean ring. Clearly
0 should be the empty set. Find appropriate interpretations for 1, +
and * which satisfy the identities B.

262 10 Equational Unification

10.28 Show that t =p x * (tp + t1) + to where ¢, := {z > b}(¢t) for b=0, 1.

10.29 Show that for every term ¢ and variable x there are terms u and v
such that t g x *u+ (z + 1) * v and z ¢ Var(u,v).

10.30 Prove the following analogue of Theorem 10.4.10:
Theorem Let t g x *xu+ (x+ 1) *x v be such that z ¢ Var(u,v) and
define t' : = u x v.

(a) Every unifier of t =5 0 is a unifier of t’ ~} 0.

(b) If o is a reproductive unifier of ' ~p 0 and x ¢ Dom(o), then
o =cU{z— zx(o(u)+0o()+1)+ ()} is a reproductive

unifier of t =g 0.

10.31 Show that zIB, the inductive theory induced by B, is decidable.

10.5 Bibliographic notes

In this chapter, we have only introduced the basic notions of unification
theory, and have investigated the unification properties of three equational
theories in more detail. There are many other interesting topics in this
area that we have not addressed at all. Exhaustive overviews on unification
theory, providing references to most of the relevant literature, can be found
in [12, 125, 233|.

The notion of a minimal complete set of F-unifiers was first introduced
(under the name “maximally general set of unifiers”) by Plotkin in [205],
where he already conjectured that such a set need not always exist. The
first example of an equational theory for which this worst case occurs (i.e.
of a theory of unification type zero) was given by Fages and Huet [89]. The
notion “unification type” and the corresponding unification hierarchy were
developed by Siekmann [231]. Plotkin’s definition of E-instantiation already
differed from the original definition of the instantiation quasi-order used for
syntactic unification [216] in that it was restricted to the variables occurring
in the unification problem. An example that shows that the unification
type of an equational theory may become worse if one uses an instantiation
quasi-order that compares substitutions on all variables can be found in [10].

The simple C-unification algorithm of Exercise 10.13 was used in the
theorem prover by Guard [102]. Completeness of this algorithm was shown
by Siekmann [232], who also pointed out that this method generates many
redundant solutions. Other C-unification algorithms have been described in
(87,110, 139], but none of them produces a minimal complete set (without an
additional minimization phase). NP-completeness of the decision problem
for C-unification with constants is mentioned in [95], where it is attributed

10.5 Bibliographic notes 263

to Sethi (private communication, 1977). The simple proof that we have
given in this chapter is due to Narendran (private communication, 1993),
who also pointed out that similar reductions can be employed for AC and
ACI.

The first proof of NP-hardness of AC-unification with constants can be
found in [25]. Polynomiality of the decision problem for elementary AC-
unification was first pointed out in [80]. In [135], it is shown that sol-
vability of general AC-unification problems is in NP. The first algorithms
for AC-unification with constants have been independently developed by
Stickel [236] and Livesey and Siekmann [160]. Both algorithms reduce AC-
unification to the problem of solving linear diophantine equations, but they
differ in the treatment of free constants. Stickel first solves an elemen-
tary AC-unification problem, which is obtained by treating free constants as
variables, and then modifies the solutions of the elementary problem to ob-
tain solutions of the problem with constants. Livesey and Siekmann handle
free constants with the help of inhomogeneous linear diophantine equati-
ons. In [237], Stickel presented an algorithm for general AC-unification, but
could not show that it terminates. This gap was closed by Fages in [88].
More recent algorithms for AC-unification are, for example, described in
[139, 92, 46, 111, 159, 31, 29, 30]. The bound on the size of minimal non-
trivial solutions of a system of homogeneous linear diophantine equations
presented in this chapter is due to Pottier [208]. Other results on this topic
can, for example, be found in [118, 154, 53, 31, 80, 57, 91].

Two interesting lines of research in unification theory have been triggered
by the investigation of AC-unification. On the one hand, it turned out that
there are large classes of theories for which unification can be reduced to
solving systems of linear equations in appropriate semirings [9, 191]. For
example, unification modulo the theory of Abelian groups can be reduced
to solving linear diophantine equations in Z [157]. On the other hand, the
problem of how to construct an algorithm for general AC-unification from
a given algorithm for AC-unification with constants has been generalized to
the so-called combination problem for unification algorithms (which is the
unification counterpart to the problem of combining decision procedures for
the word problem): given equational theories E; and Fj over disjoint signa-
tures, how can algorithms for E;-unification be combined into an algorithm
for unification modulo F; U E»? Rather general solutions to this problem
have been presented in [223, 11].

Boolean unification goes back to Boole himself [28], who solved the one-
variable case by variable elimination. A modern treatment of Boolean equa-
tions can be found in the book by Rudeanu [219]. Boolean unification

264 10 Equational Unification

was rediscovered for computer science by Biittner and Simonis [47] (who
use variable elimination) and Martin and Nipkow [167, 168] (who reinvent
Lowenheim’s method). Martin and Nipkow also deal with the issue of addi-
tional constants in Boolean terms. Nipkow has generalized Boolean unifica-
tion to primal algebras [187].

We have made use of semantic arguments to show that two Boolean terms
are equal iff their polynomial forms are equal. There are two approaches to
computing polynomial forms and obtaining this result that rely on rewriting
alone: rewriting modulo associativity and commutativity [116, 203], and
ordered rewriting [169, 202]. Both approaches generate a terminating rewrite
relation despite the fact that + and * are commutative (see Chapter 11 for
more information).

11

Extensions

Term rewriting is an extensive subject area, and this book covers only the
basic concepts. Therefore we would like to give our readers a glimpse of
further important topics. We concentrate mainly on extensions of term
rewriting that are motivated by the inability of the basic framework to deal
with certain common problems, such as inherently nonterminating identities
and weaknesses of first-order equational logic. Note that this chapter is only
meant to whet the reader’s appetite and provide pointers to the literature,
where precise treatments can be found.

11.1 Rewriting modulo equational theories

Probably the most infuriating limitation of the basic rewriting framework is
the inability to deal gracefully with commutative operators: commutativity
cannot be oriented into a terminating rewrite rule. An obvious idea is not
to use commutativity as a rewrite rule, but to take it into account when
applying some other rewrite rule. For example, if + is commutative, the
rewrite rule 0+ 2 — x can reduce t+ 0 to t. Commutativity is built into the
rewrite process. More abstractly, we can split a set of identities into a set E
that contains problematic identities like commutativity, and the remainder
R. This gives rise to a new rewrite relation — g g, which is defined on
equivalence classes of terms:

[3]%E —>R/E [t]%E K= 33,, t’. S RE 3’ —R t/ XE t.
It is easy to see that
SRRUET © [S]NE ‘i’R/E [t]zE.

If —g/E is convergent then s ¥gup t & ([slxglr/e) = ([tlxglr/E) holds.
Of course the main problem with this rather general approach is that in

266 11 Ezxtensions

order to reduce [s]~g W.r.t. —g/r we need to explore all of [s]xy, i-e. we
need to enumerate all terms that are E-equivalent to s to find one that
is reducible via —pg. This requires all E-equivalence classes to be finite.
Although this works for some popular sets of identities like AC, it is quite
impractical from an efficiency point of view. Hence we need to refine —g/g.

Huet’s approach [119] is quite radical: use — g instead of — /. He shows
that under certain termination and critical pair conditions (involving critical
pairs not just between rules in R but also between rules in R and identities
in E), s ®gug t & slp =g tlg. The main restriction of his approach is
that R needs to be left-linear.

A compromise between — g and — /g is studied by Peterson and Stickel
[203] and generalized by Jouannaud and Kirchner [127]:

s—gpet < Il —r)e€R,pePos(s),o. slp~g ol ANt = s[or]p.

This means that each rewrite step involves matching modulo ~g.

Note that — g g is weaker than —p/p: if E={(z+y)+z~z+(y+2)}
and R = {0+ 2 — z}, then [(a + 0) + b]l~y —R/E [a + b~y because
(a+0)+b=ga+ (0+b) »ga+b, but (a+0)+bis in normal form w.r.t.
—RE-

Jouannaud and Kirchner develop a critical pair lemma and a comple-
tion procedure for —pg r where the critical pair computation involves E-
unification. Although R need not be left-linear, E-equivalence classes must
be finite. Bachmair reformulates this completion procedure using inference
rules and proof orders [14, 6].

An important application of —g g is the following convergent (modulo
~g) rewrite system for Boolean rings [116] (see Section 10.4):

E = T+y = y+z, TkY N Y,
T 9
z+y)+2z =~ z+(y+2), (zxy)*xz =~ xx(y*2)
z+z — 0, T*xx — I,
R := 0+x — =, Oxxz — 0,
zx(y+2) — (z*xy)+ (x*2), lxz — z,
R contains so-called “extended” rules like (z + =) + y — 0 + y, which are
shown as “...” above. They can be generated automatically from the basic
rules of R.

Not only do we have s ~p t < (slgg) ~E (tlg E), i.e. a rewriting-based
decision procedure for ~pg. Confluence of —r g modulo ~g can even be
checked automatically using an AC-unification algorithm (see Section 10.3)
for computing critical pairs.

11.2 Ordered rewriting 267

In general, the main drawback of —pg g is that rewriting requires E-
matching and critical pair computations require E-unification, which is
harmful for efficiency and decidability.

11.2 Ordered rewriting

Ordered rewriting addresses a similar problem to rewriting modulo an equa-
tional theory: how to deal with nonterminating rules like commutativity. It
does so without the need for E-unification or even E-matching.

The basic idea is to shift the termination proof from “compile time” to
“run time”. In both cases, we need a reduction order >. In ordinary term
rewriting, termination of —pg is proved once and for all by showing that R is
contained in ». In ordered rewriting, termination is enforced by admitting
a rewrite step only if it decreases the term w.r.t. . For example, if R =
{r*y — y*z} and > is such that b*a > a * b (e.g. the lexicographic path
order induced by b > a), then b * a rewrites to a x b, but here the process
stops because a * b % b* a (> is well-founded). As termination is enforced
in each step, identities can be used in both directions, provided the order
decreases. This leads to the rewrite relation — g, :

s—p.t & J(l=r)e EUE™L pePos(s), o
slp=0l A t=s[or]p A ol >or,

where F is an arbitrary set of identities. An identity [=~ r such that [> r
is usually written [— 7.
Since — gy is meant to decide ~g, we would like the following to hold:

s—pt & seop t. (%)

However, this is a bit too ambitious: if F = {z*xy =~ y*z}, then we have in
particular z *y <> g y* x, but there is no reduction order > such that either
Txy = Yyxx or y*x — T *y. Therefore we settle for the weaker requirement
that (x) should hold for all ground terms s and ¢. This restriction to ground
terms is unproblematic as far as deciding ~g is concerned, because we can
always replace all variables by new free constants (see the remark after
Definition 4.1.2). Therefore > is required to be total on ground terms (for
an example of such a reduction order see Exercise 5.20), which immediately
guarantees (x) for all ground terms s and t.

On ground terms, ordinary rewriting is a special case of ordered rewriting
provided R terminates: if > = 5 r then s »pt < s —p. t for all ground
terms s and t.

Because — gy is terminating (> is a reduction order), it follows from (x)

268 11 FExtensions

that s ®g t & slg, = t|p, holds for all ground terms s and ¢ provi-
ded — gy is (locally) ground confluent, i.e. confluent for all ground terms.
Unfortunately, ground confluence of terminating term rewriting systems is
undecidable in general [136]. Because ordered rewriting covers ordinary
rewriting, the undecidability carries over.

Fortunately, there is an extended Critical Pair Lemma [14, 18] which
requires checking that all ground instances of all “extended” critical pairs
(where both sides of an identity are used) are joinable. Although the latter
property is necessarily also undecidable, there are sufficient conditions for
establishing it, which work for many practical examples [169, 202]. Under
suitable assumptions about > (which, for example, the lexicographic path
order meets), the following two systems are ground convergent:

(@xy)xz — z*(y*2),
TxY R Y*T,
zx(yxz) =~ yx*(Tx2).

This one merely shows that ~ 4 can be decided by sorting, and that ordered
rewriting can simulate bubble-sort.

+y)+z — z+(y+2), (xy)xz — zx(y=*2),

rT+y = yYy—+co, TxY N Yx*xIT,
r+(y+z) = y+(z+2), cx(yxz) ~ yx(r*2),
zx(Yy+2) — Txy+T*z, (x+y)*xz — Txz+yx*z,

0+ — =, z+0 — «zx,

lxx — =z, zxl — x,

Oxz — O, zx0 — 0,

r+z — 0, T*xTr — X,
z+(x+y — v, Tzx(zxy) — T*xy.

This one uses the sorting trick for ordered rewriting in Boolean rings (see
Section 10.4), thus providing an alternative decision procedure for ~pg, which
does not need AC-matching.

Extending completion to ordered rewriting leads to “unfailing comple-
tion”. Because ordered rewriting can handle non-orientable identities, un-
failing completion does not fail. Under certain reasonable assumptions one
can even show that unfailing completion will find a convergent system if it
exists. For details see [14, 18].

11.8 Conditional identities and conditional rewriting 269

11.3 Conditional identities and conditional rewriting

Equational logic is only a small fragment of first-order logic and of limited
expressiveness. For example, a classical result by Redko [215, 96] shows that
there is no finite set of identities which axiomatizes equivalence of regular
expressions using only the basic operators “concatenation”, “union” and
“Kleene star”. However, there is a finite set of conditional identities, i.e.
formulae

sS1~UUN...ANsp=t, > s=T,

which does the job using only the basic operators [148].

A simpler example of this kind is based on the integers generated by the
constant 0, the successor function s and the predecessor function p, subject
to the identities Ez := {p(s(z)) = z, s(p(z)) ~ x}. It is not hard to show
that there is no finite set of identities E O FEj defining a function pos such
that pos(t) ~g true iff ¢ represents a positive integer, and pos(t) ~g false
otherwise. Again, E may only mention the basic operators 0, s, p and pos;
true and false can be encoded as s(0) and 0. (Exercise: find a finite set E
containing additional operators.) However, using conditional identities, the
axiomatization is easy:

true = pos(s(x)) = true,
false = pos(p(x)) = false.

pos(s(0)) ~ true, pos(z
pos(0) =~ false, pos(x

Q

)
)

The above examples show that in many cases conditional identities are
more expressive than unconditional ones. Fortunately, much of the algebraic
theory of equational classes as presented in Section 3.5 can be generalized to
the conditional case [246]. In particular, given a set of conditional identities
E, one can again define a relation ~g, the set of identities valid in all models
of E, and there is a complete proof system for ~g [227].

However, rewriting with conditional identities, also known as conditional
rewriting, differs from its unconditional relative in many important aspects.
For a start, there are (at least) two potentially interesting definitions of — g,
where E is a set of conditional identities:

s—gt & Ilh=nAN...ANly,=r,=>1l=r1)€ E,p€ Pos(s),o.
slp=0l N t=slorlp A oli~ory A... A\ ol, ~ory.

In the more equational definition, ~ is <>z, in the more rewriting oriented
one, ~ is |g. To distinguish the two interpretations we write — g and
Note that the above “definition” of —pg is recursive and hence not a

270 11 Extensions

definition at all. Strictly speaking — g is the least relation that satisfies the
above equivalence, which can also be expressed as an inductive definition.

Although &g and ~g coincide, we only have < 1E C ~g: given F :=
{c~a, cxb, a = b= d= e}, which consists of two unconditional identities
and a conditional one, where a,...,e are distinct constants, d =~ e is valid
but d < e does not hold. In case — g is confluent (which — 5 is not!),
&g and & e coincide. Despite the discrepancy between ~g and & B>
the latter is the standard interpretation of conditional rewriting because it
has an obvious operational reading. That is, unless the premises of a rule
contain “extra variables”, i.e. variables which do not occur on the lhs of the
conclusion, e.g. as in z & y x y = sqrt(x) ~ y. In this case rewriting turns
into “narrowing” (see Section 11.6). But even if conditions do not contain
extra variables, there is a nasty surprise: — | need not be decidable and the
normal form of a term need not be computable. Nevertheless, conditional
rewriting is essential in many applications of rewriting.

The basic theory of conditional rewriting, including termination and con-
fluence, goes back to [134, 26, 78]. Completion is studied by Ganzinger [94],
modularity by Middeldorp [177, 178]. A more detailed guide to the extensive
literature is beyond the scope of this book.

11.4 Higher-order rewrite systems

Term rewriting systems deal well with first-order objects like numbers and
lists, but fail to accommodate higher-order functions. For example, the
standard definition of the well-known map function, which applies a function
to all elements of a list,

map(f,empty) — empty,

map(f,cons(xz,xs)) — cons(f(x), map(f,xs)),

is a legal functional program but not a legal TRS: in the second rule, f
appears both as a variable and as a function symbol.

A second example is the manipulation of terms with bound variables.
Although term rewriting can deal with propositional logic, for example via
Boolean rings, predicate logic is another matter. A simple tautology like
(Vz.(P(z) A Q(x))) & ((Vz.P(x)) A (Vz.Q(x))) is outside the scope of term
rewriting because of the bound variables.

The solution to these problems is the A-calculus [21, 113], a rewriting-
based formalism where variable binding and substitution are primitive. It is
the core of all functional programming languages [182] and many theorem

11.5 Reduction strategies 271

provers [97, 200]. Because we cannot possibly explain the A-calculus too,
the following remarks are intended for those already familiar with it.

Higher-order rewrite systems (HRS) are simply sets of rewrite rules be-
tween (typed) A-terms. For example, the above definition of map is an HRS.
Because A-terms generalize first-order terms, every TRS is also an HRS.

The transformation of the above rule for V is a bit more subtle. Instead of
Vz.P(x) we need to write all(A\x.P(x)), where all is a higher-order function
representing the universal quantifier. This encoding of quantifiers as A-terms
is due to Church [50]. The rewrite rule now becomes

al(\z.P(z) A Q(z)) — dall(\z.P(2)) A all(Az.Q(x)).

So far we have said nothing about how the rules of an HRS interact with
the primitive conversion rules (c, 5 and 1) of the A-calculus. There are two
different approaches:

1. Rewriting is performed modulo the conversion rules of A-calculus, i.e.
the latter are part of the matching process. This idea goes back to
Klop [140, 144], although he did not use the A-calculus itself but had his
own meta-language to deal with binding and substitution and called the
resulting calculus “Combinatory Reduction Systems”. Nipkow suggested
the simply-typed A-calculus as a meta-language and extended a number
of critical-pair-based confluence criteria to the higher-order setting [189,
190]. Termination orders are also beginning to emerge [207, 129).

Van Oostrom and van Raamsdonk [197, 195, 212, 196] generalize the
framework further by abstracting from the substitution calculus of the
meta-language. They derive very strong confluence results in this setting.

2. The rewrite rules are combined with the reduction rules of the A-calculus,
i.e. B reduction steps are performed explicitly and not as part of other
rewrite steps. The main question is when confluence and termination
are preserved in this combination. This line of research was started by
Tannen [33] and has continued to flourish [34, 20, 22, 128].

11.5 Reduction strategies

Throughout this book we have pretended that rewrite systems only come in
two flavours: terminating and nonterminating. This is too simplistic. Due
to the possible choice between different redexes in a term, some reduction
sequences from a given term may terminate while others do not: the TRS
{f(x) - b, a — a} induces both the terminating reduction f(a) — b and
the nonterminating one f(a) — f(a) — ---. Especially when term rewriting

272 11 Extensions

is viewed as an abstract form of program execution, it is vital to control this
nondeterminism by a reduction strategy. Because functional programs can
be viewed as orthogonal term rewriting systems (see Section 6.3), the study
of reduction strategies is mostly confined to orthogonal systems.

Reduction strategies are often defined in terms of the position of a redex:
outermost means that it is not properly contained in another redex, and
leftmost refers to the order of subterms in linear notation. Important
strategies are:

leftmost-outermost reduces the leftmost of the outermost redexes in each
step. This corresponds to the evaluation mechanism “call-by-name”
in programming languages.

parallel-outermost reduces all outermost redexes simultaneously in each
step. This is unproblematic because different outermost redexes
must always be in separate subterms.

It can be shown that parallel-outermost is a normalizing strategy for
orthogonal systems, i.e. repeated parallel-outermost reduction leads to a
normal form if one exists. This strategy can be a bit expensive because
it may reduce more redexes than necessary for reaching a normal form.
Leftmost-outermost, an obvious cheaper alternative, fails to be normalizing:
{f(z,c¢) — d, a — a,b — c} induces the infinite leftmost-outermost reduc-
tion f(a,b) — f(a,b) — ---. If we require the TRS to be both orthogonal
and left-normal, i.e. in all left-hand sides the function and constant symbols
occur to the left of all variables (in linear notation), then leftmost-outermost
is also normalizing. As a consequence, leftmost-outermost reduction for com-
binatory logic is normalizing (see Example 4.1.3, where you have to write
“” as a prefix rather than an infix symbol to verify left-normality).

Huet and Lévy’s landmark study [122] of reduction strategies covers all of
the above results. In particular they identify a subclass of orthogonal sys-
tems called strongly sequential which admit an efficient normalizing stra-
tegy. Strongly sequential systems include left-normal systems but exclude
systems such as combinatory logic extended by the following rules:

B:={f(a,b,xz) — ¢, f(b,z,a) — ¢, f(x,a,b) — c}.

This TRS is orthogonal but not strongly sequential. It requires some kind of
pseudo-parallel reduction strategy. When normalizing f(¢1, t2, t3) we cannot
fix on just two of the arguments because we cannot decide which arguments
terminate (thanks to Turing-completeness of combinatory logic).

The study of reduction strategies goes back to the A-calculus and combi-
natory logic [61, 62, 21]. O’Donnell [192] was the first to consider reduction

11.6 Narrowing 273

strategies for orthogonal term rewriting systems. Klop [141] gives a nice
overview of the whole area and also covers the results by Huet and Lévy
(see also [142]). Middeldorp [179] adapts the theory to the situation where
proper normal forms may not exist, as is the case in lazy functional program-
ming. Durand and Middeldorp [83] generalize and simplify Huet and Lévy’s
work using tree automata techniques, an idea due to Comon [56]. Kenna-
way [138] proves the remarkable theorem that every orthogonal TRS has a
computable “sequential” reduction strategy, which appears to contradict our
intuition about system B above. Antoy and Middeldorp [5] generalize and
simplify this result while also surveying the related literature. Van Raams-
donk [212, 213] shows that for a certain subclass of (almost) orthogonal
higher-order rewrite systems, “outermost-fair” reduction is normalizing,.

11.6 Narrowing

Narrowing is a process that can be used as a general E-unification procedure,
which in turn leads to an execution model for combined functional and logic
programming languages. Formally, narrowing can be seen as a generalization
of term rewriting where the matching process is replaced by unification: both
the rewrite rule and the term to be rewritten are instantiated.

Let E be a set of identities, and assume that R is a convergent term
rewriting system that is equivalent to E. If ¢ is an E-unifier of the equation
s &% t, then o(s) and o(t) have a common R-normal form, that is, there
are chains of reductions starting from o(s) and o(t) that lead to the same
R-irreducible term. The main idea underlying narrowing is to construct the
unifier and the corresponding chains of reductions simultaneously.

As an example, consider the set of identities F := {0 + = ~ z} and let
R be the corresponding convergent TRS. In order to solve the E-unification
problem y+z z?E 0, we look for an instance of y+z to which the rule 0+z —
x applies. Such an instance can be found by (syntactically) unifying y + 2
with the left-hand side 0+ x, which yields the mgu o1 := {y — 0,z — z}. If
we apply o1 to y + z, we obtain first the term 0 + x, and then, by rewriting
with R, the term z. This yields the new equation x z;’g 0, which has the
(syntactic) mgu 7 := {z — 0}. By this process, we have simultaneously
constructed the E-unifier 0 := 701 = {z — 0,y — 0,2 — 0} of y + 2 z}; 0,
and the rewrite chain o(y +2) =0+ 0 —g 0 = ¢(0).

Formally, the narrowing relation ~» g induced by a TRS R is defined
as follows. Let s be a term. If p € Pos(s) is a non-variable position,
[— r is a renamed rule of R such that s and ! — r have no variables in
common, and o is a (syntactic) mgu of ! and s|p, then s ~g o(s)[o(r)]p.

274 11 Ezxtensions

We write s ~% o(s)[o(r)]p to indicate which substitution was used in the
narrowing step. The narrowing relation is extended to equations as follows:
(smht)~% (8 =g) iff s~% s’ and ¢/ = o(t) or t ~% ' and 8’ = o(s).

If R is a convergent TRS that is equivalent to the set of identities F, then
the narrowing relation induced by R gives rise to the following E-unification
procedure: In order to enumerate a complete set of E-unifiers of s z;; t,
generate all narrowing sequences

(s b 1) ~F (515 01) ~F - T (snm1 ®F ta1) ~F (30~ ta)-
If s, =33 t, has the (syntactic) mgu 7, then this narrowing sequence yields
the E-unifier 70, ---01 of s zg t. Note that this is a search procedure
because there may be any number of narrowing sequences starting from a
given equation due to the choice of which rule to apply where. Narrowing
is in general neither confluent nor terminating, even if R is.

The idea of narrowing was first mentioned by Slagle [234] and Lank-
ford [155] as an optimization of the general paramodulation rule in cases
where a canonical TRS is available. The first description of narrowing as a
general E-unification procedure is due to Fay [90].

In the simple unoptimized form described above, the E-unification pro-
cedure obtained by narrowing usually does not terminate (even for finitary
theories), and the complete set of E-unifiers generated this way is usually
not minimal. Most of the research on narrowing as a general equational
unification procedure has been concerned with finding methods to prune
the search space. In principle, these optimizations of narrowing depend on
the fact that, for a convergent TRS, one can fix an arbitrary strategy for
computing normal forms. Thus, it is sufficient to generate all narrowing
derivations that are obtained from rewriting derivations conforming to the
fixed strategy. For a survey see [103] and for recent results [180].

Narrowing can also be generalized to conditional rewriting [123, 180] and
rewriting modulo equational theories [126]. A combination of both genera-
lizations is described in [27]. Narrowing with higher-order rewrite rules has
also been studied [209, 211, 210, 162, 7, 105].

Finally, narrowing can combine first-order functional and logic program-
ming. Functional programs can be viewed as orthogonal term rewriting
systems. A clause p < pi,...,p, of a logic program can be viewed as a
conditional identity p; ~ true A ... A p, = true = p = true (where the
conditions may contain “extra” variables!). Therefore conditional identit-
ies subsume functional and logic programs. A query in the sense of logic
programming becomes an equation g z}'g true. Evaluating a term ¢ in the
sense of functional programming corresponds to solving the equation ¢ a7}, z.

11.6 Narrowing 275

Narrowing with conditional identities constitutes a unified evaluation me-
chanism for such queries. However, narrowing for convergent systems is
slightly different from narrowing in the context of functional programming,
where termination cannot be assumed. For the latter see, for example, [4].
For surveys of combined functional and logic programming see [103, 104].

Appendix 1
Ordered Sets

A1l.1 Basic definitions
Let > be a binary relation on a set A. Recall that b is

transitive it Vz,y,z€ A s DyAyb>z = x>z,
reflexive iff Ve e A. z >z,

irreflexive iff Vo € A. —(z > 2),

symmetric ifftVe,ye A.x >py = y D>z,

antisymmetric iff Vz,yec A. z byAy D>z = z=y.

An equivalence relation is a reflexive, transitive and symmetric relation.
An equivalence relation ~ C A X A induces an equivalence class [a]~, :=
{a’ € A| a~ a'} for each a € A and a quotient set A/, := {[a]~ | a € A}.

Note that equivalence classes form a partition of A: two equivalence classes
[a]~ and [b]~. are either identical (if a ~ b) or disjoint (if not a ~ b).

A partial order is a reflexive, transitive and antisymmetric relation
which is usually written >. The pair (A, >) consisting of a set A and a
partial order > on A is called a partially ordered set or poset. A strict
order is a transitive and irreflexive relation usually written >. Note that
z < y means y > z and = # y means —(z > y) (and similarly for >).

Partial orders and strict orders are interdefinable:

e Every partial order > induces a strict order
x>y & x>2YyhNx#y,

the strict part of >.
e Every strict order > induces a partial order

T2y &S c>yVe =y,

the reflexive closure of >.

276

Al.1 Basic definitions 277
A transitive and reflexive relation is a quasi-order. If 2 is a quasi-order,
>y = z2YA(y 2 T)
is the associated strict order and
T~y S T 2YNY T
the associated equivalence. The quasi-order 2 induces a partial order on
Al
[zl~ 2 Y]~ & 2.
A relation > is called linear or total if x >yVz =yVy > x for all z

and y. For example, a partial order > is linear if x < yVz > y for all and
y; in this case > is simply called a linear order.

Definition A1.1.1 Let (A, >) be a poset and let M C A.

e m € M is a maximal element of M if Vne M. n>m = n=m.
e m € M is the greatest element of M if Vn € M. m > n.
e u € A is an upper bound of M if Vm e M. u > m.

The notions of minimal and least element and lower bound are defined
dually, i.e. by reversing the order.

Appendix 2
A Bluffer’s Guide to ML

This appendix assumes that the reader is familiar with the ideas and princi-

ples of functional programming and merely introduces (some of) their con-

crete syntax in ML. For a full exposition of ML see Paulson’s textbook [201].
To aid readability, we distinguish keywords from identifiers.

A2.1 Types

ML is a strongly typed language. In the sequel, types are denoted by 7.

Basic types are bool, int and string. In addition to the basic types, there
are type constructors for forming new types. Given a type constructor ¢
of n arguments and types 71, ..., Tn, ML uses postfix syntax (71,...,7,)t to
denote the compound type. If n = 1 we can write 7 ¢ instead of (7)¢. There
are three predefined type constructors:

71 => To is the type of functions from 71 to 7.
T * --- * T, is the Cartesian product 71 X -+ X 7.
T list is the type of lists whose elements have type 7.

Note that -> and * are infixes. To disambiguate the syntax, -> binds less
tightly than *, which binds less tightly than postfix notation. Function
arrows associate to the right. Therefore

int * int list => bool -> string

is short for

(int * ((int)list)) -> (bool -> string)

Types may also contain type variables which we write «, 3, etc.

278

A2.2 Expressions 279

A2.2 Expressions

In the sequel, the letter e denotes an expression. If expression e has type 7
we write e: 7.

A2.2.1 Basic values

The type bool has two constants true and false. String constants are enclosed
in double quotes, as in "ML".

The basic list constructors are [1, the empty list, and the infix : :, which
puts an element in front of a list. For example, 1::(2::[]) is the list [1,2].
A list of n elements is written [e1,...,e,], where all elements need to have
the same type, say 7, in which case the whole list has type 7 list.

Tuples are written as usual: if e;:7; for ¢ = 1,...,n then (ey,...,e,) is
an expression of type 71 * --- * T,.

A2.2.2 Compound expressions

Larger expressions are formed by function application. If f: 7 -> 75 and
e:71 then f e (also written (f e) or f(e)) denotes the application of f to
e and is of type 7. ML is an eager language: e is evaluated first and the
result is passed to f.

If f is a function of type 7, -> --- -> 7, -> T we write the application of
f to arguments ej,...,e, as f e1 ... e,. This is short for (... (f e1)...en),
which means that first f is applied to e, then the result to ez, and so on:
application associates to the left. We need not supply all of f’s arguments
at once: (f e1) is a perfectly legal expression of type 7o => --- => 7, =>
T.

Complex expressions can be structured using the let-in-end syntax for
local bindings, as in

let val =z = 42

val y = x*x
in y+y end

The evaluation of this expression proceeds as follows:

1. The value 42 is locally bound to z.
2. The value 1764 is locally bound to y.
3. The value of the whole expression is y+y, i.e. 3528.

This evaluation does not affect the bindings of x or y outside the expression.

280 A2 A Bluffer’s Guide to ML

A2.3 Function declarations

Functions are declared with the keyword fun and the following syntax:

fun fzx1... Tp = e

This defines a curried function of n arguments. Its type is

TL => =+ =>Tp => T

where 7; is the type of x; and 7 the type of e.

ML’s type system lets us deduce the type of a function automatically from
its definition, so the user is not required to annotate it with types. For
example, the ML system infers from the definition

fun addl z y = z+y+l;

that addl: int -> int -> int. You can now evaluate addl 5 7, which
yields 13, or apply add! to only one argument: addl 5 is a well-formed
expression of type int => int. In fact, you can treat addl 5 like any other
function. For example,

let val add6 = addl 5 in (add6 10) + (add6 20) end;

evaluates to 42.

Parentheses may be required to disambiguate an expression. For example,
addl add1 2 3 4 means (((addl addl) 2) 3) 4, which is a nonsense, and
should have been add! (add1l 2 3) 4.

The function add! may only be applied to integers. ML functions can also
be polymorphic, in which case they can be applied to arguments of different
types. A simple example is

fun id = = x;

where id is assigned the type a -> « because it can take arguments of an
arbitrary type a and return a result of the same type. Another simple
example is

fun swap (z,y) = (y,z);

of type a * B -> (3 * «. At this point we have already used pattern mat-
ching, an extended form of function definition. In general, the arguments
of the function being defined need not be individual variables but could be
arbitrary patterns, for example

fun perm ((z,y),2) = (z,y,x);

which has type (a * B) * v => v * 3 * q.

A2.8 Function declarations 281

Patterns are expressions which contain only variables and constructors.
Standard constructors are tuples and the list constructors [] and ::. Pat-
tern matching allows functions to be defined by a list of clauses instead of
just a single one. A simple example is

(* zip: a list * B list => (o * B) list *)

fun zip ([1, [D) =0

| zip (z::xs, y::ys) = (x,y) :: zip(zs,ys);

Clearly zip([z1,...,2,]1, [Y1,...,Yn]) is [(x1,y1),..., (@n,ys)]. The
first clause takes care of the case where both lists are empty, and the se-
cond clause of the case where both lists are nonempty. Pattern matching
automatically decomposes the lists into their first elements x and y and the
remainders zs and ys. Note that zip is not defined if the two lists are of
different lengths. In that case the execution stops with an exception at the
point where zip is called with one empty and one nonempty list.

In the definition of zip, the order of the two clauses does not matter. In
general, it does.

fun length (x::xs) = 1 + length(xs)
| length xs =0

The function length has type a list => int and computes the length of a
list. The second clause is used only if the argument does not match the first
clause. Reversing the order of the clauses results in a function which is 0
everywhere. Fortunately, in that case the ML system would at least issue a
warning that the second clause is redundant. Variables which are not used
on the rhs can be replaced by “_”:

fun length (_::xs) = 1 + length(xs)

1
| length _ 0

The above definition of length is not very elegant because one can write
the second lhs more clearly as length [1, which also removes the dependence
on the order.

The generalized form of function definition is

fun f patterns;
| f patternsg

non

€1
€2

| f patterns, = en

The declaration of mutually recursive functions uses the keyword and to
separate the functions:

fun even 0 = true

| even n = odd(n-1)
and odd 0 = false

| odd n = even(n-1);

282 A2 A Bluffer’s Guide to ML

Not every function must have a name. The keyword fn introduces an
anonymous function: fn x => e is the function which takes an argument z
and returns the result e. For example, add6 above could also be written as
fn x => z+6. Pattern matching is allowed as well:

fn patterny => e1 | ... | pattern, => en

Pattern matching is also allowed in case expressions:

case e of pattern; => e1 | ... | pattern, => en

The above can be regarded as a shorthand for

(fn pattern; => e1 | ... | pattern,, => ep) (e)

A2.4 Standard functions
A2.4.1 Booleans

The two infix operations andalso and orelse realize conditional “and” and
“or”: by andalso by is equivalent to if b; then by else false;
b1 orelse by is equivalent to if b; then true else bs.

A2.4.2 Lists

The following is a collection of standard functions from the literature, some
of which are part of ML already.

(* null: « list -> bool *)
fun null [] = true
| null (_::2) = false;

(*x map: (a -> B) -> « list => B list *)
fun map f [1 =[]
| map f (z::x8) = f(x) :: map f xs;

(x exists: (a => bool) -> o list -> bool *)
fun ezists p [] = false
| exists p (x::xs) = p(x) orelse exists p xs;

(x forall: (a -> bool) -> o list => bool *)
fun forall p [] = true
| forall p (x::23) = p(x) andalso forall p zs;
(* concat: o list list => a list *)
fun concat [] =0

| concat (x::28) = x @ (concat zs);

The infix @ appends two lists: [z1,...,2m] @ [yi,..., Yn] evaluates to
[xl""’xm)yl""’yn]'

A2.5 Datatypes 283

A2.5 Datatypes

ML offers a datatype definition facility which is strongly related to the con-
cept of a term algebra: roughly speaking, the elements of a datatype corre-
spond to the terms over a given signature. For example, binary trees with
integer labels can be introduced as follows:

datatype btree = Mt | Node of btree * int * btree

This says that a value of type btree is either the constant Mt or of the form
Node(t1,i,t2), where i:int and t1,t2: btree. The functions Mt: btree and
Node: btree * int * btree -> btree are called constructors because they
construct the values of the datatype.

In general, a datatype definition of the form

datatype t = C1 of 71 | ... | Cn of T

introduces a new type ¢t and constructor functions C;: 7 -> t. If C; is a
constant, of 7; is omitted.

A2.6 Exceptions

Exceptions arise naturally because inbuilt functions, e.g. division, but also
user-defined ones, e.g. zip above, are undefined (as opposed to nontermina-
ting) for certain arguments. In that case the function raises an exception,
which interrupts the current evaluation. However, exceptions can also be
handled, i.e. the interruption can be caught before it propagates to the top
level. Hence there are three ML constructs dealing with exceptions:

exception E;
declares a user-defined exception named E.

raise E
is an expression which has no value but raises exception E.

e1 handle FE => ey
is an expression which is evaluated as follows. If e; evaluates to a
normal value, then this is the value of the whole expression. If the
evaluation of e; raises exception F, handle that exception by evalua-
ting ey instead. If the evaluation of e; raises some other exception,
the whole expression raises that exception.

Bibliography

LNCS = Lecture Notes in Computer Science.

[1]
[2]
[3]
[4]
[5]
;

(8]
[9]
[10]

[11]

[12]

[13]

Wilhelm Ackermann. Solvable Cases of the Decision Problem. North-
Holland, 1954.

William W. Adams and Philippe Loustaunau. An Introduction to Grébner
Bases, volume 3 of Graduate Studies in Mathematics. AMS, 1994.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing
strategy. In Proc. 21st ACM Symp. Principles of Programming Languages,
pages 268-279, 1994.

Sergio Antoy and Aart Middeldorp. A sequential reduction strategy. Theo-
retical Computer Science, 165:75-95, 1996.

Jiirgen Avenhaus. Reduktionssysteme. Springer-Verlag, 1995.

Jiirgen Avenhaus and Carlos Loria-Sdenz. Higher-order conditional rewrit-
ing and narrowing. In J.-P. Jouannaud, editor, Constraints in Computatio-
nal Logics, volume 845 of LNCS, pages 269-284. Springer-Verlag, 1994.
Franz Baader. Unification in idempotent semigroups is of type zero. J.
Automated Reasoning, 2:283-286, 1986.

Franz Baader. Unification in commutative theories. J. Symbolic Computa-
tion, 8:479-497, 1989.

Franz Baader. Unification, weak unification, upper bound, lower bound,
and generalization problems. In R.V. Book, editor, Rewriting Techniques
and Applications, volume 488 of LNCS, pages 86-97. Springer-Verlag, 1991.
Franz Baader and Klaus Schulz. Unification in the union of disjoint equatio-
nal theories: Combining decision procedures. In D. Kapur, editor, Automa-
ted Deduction — CADE-11, volume 607 of LNCS, pages 50-65. Springer-
Verlag, 1992.

Franz Baader and J6rg H. Siekmann. Unification theory. In D.M. Gabbay,
C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming. Oxford University Press, 1994.

Franz Baader and Cesare Tinelli. A new approach for combining deci-
sion procedures for the word problem, and its connection to the Nelson-
Oppen combination method. In W. McCune, editor, Automated Deduction

284

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]
[29]

[30]

[31]

Bibliography 285

— CADE-14, volume 1249 of LNCS, pages 19-33. Springer-Verlag, 1997.
Leo Bachmair. Canonical Equational Proofs. Progress in Theoretical Com-
puter Science. Birkhauser, 1991.

Leo Bachmair and Bruno Buchberger. A simplified proof of the characte-
rization theorem for Grobner-bases. ACM SIGSAM Bulletin, 14(4):29-34,
1980.

Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion.
J. Symbolic Computation, 6:1-18, 1988.

Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Orderings for equa-
tional proofs. In Ist IEEE Symp. on Logic in Computer Science, pages
346-357. IEEE Computer Society Press, 1986.

Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion
without failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equa-
tions in Algebraic Structures, volume 2: Rewriting Techniques, pages 1-30.
Academic Press, 1989.

Leo Bachmair and Harald Ganzinger. Buchberger’s algorithm: A constraint-
based completion procedure. In J.-P. Jouannaud, editor, Constraints in
Computational Logics, volume 845 of LNCS, pages 285-301. Springer-
Verlag, 1994.

Franco Barbanera, Maribel Ferndndez, and Herman Geuvers. Modularity of
strong normalization and confluence in the algebraic A-cube. In 9th IEEE
Symp. Logic in Computer Science, pages 406-415. IEEE Computer Society
Press, 1994.

Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and Seman-
tics. North-Holland, 2nd edition, 1984.

Gilles Barthe and Herman Geuvers. Modular properties of algebraic type
systems. In G. Dowek, J. Heering, K. Meinke, and B. Moller, editors, Higher
Order Algebra, Logic and Term Rewriting, volume 1074 of LNCS, pages 37—
56. Springer-Verlag, 1996.

David Basin and Harald Ganzinger. Complexity analysis based on ordered
resolution. In 11th IEEE Symp. Logic in Computer Science, pages 456—465.
IEEE Computer Society Press, 1996.

Lewis Denver Baxter. The Complezity of Unification. PhD thesis, University
of Waterloo, Ontario, Canada, 1976.

Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of mat-
ching problems. J. Symbolic Computation, 3:203-216, 1987.

Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Confluence
and termination. J. Computer and System Sciences, 32:323-362, 1986.
Alexander Bockmayr. Conditional narrowing modulo a set of equations.
Applicable Algebra in Engineering, Communication and Computing, 4:147—
168, 1993.

George Boole. The Mathematical Analysis of Logic. Macmillan, 1847. Re-
printed 1948, B. Blackwell.

Alexandre Boudet. Competing for the AC-unification race. J. Automated
Reasoning, 11:185-212, 1993.

Alexandre Boudet and Evelyne Contejean. “Syntactic” AC-unification. In
J.-P. Jouannaud, editor, Proc. Constraints in Computational Logics, volume
845 of LNCS, pages 136-151. Springer-Verlag, 1994.

Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A new AC-
unification algorithm with a new algorithm for solving diophantine equa-

286

[32]

(33]

[34]
[35]
[36]

[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

Bibliography

tions. In 5th IEEE Symp. Logic in Computer Science, pages 141-150. IEEE
Computer Society Press, 1990.

Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-Schaus.
Unification in Boolean rings and Abelian groups. J. Symbolic Computation,
8:449-477, 1989.

Val Breazu-Tannen. Combining algebra and higher-order types. In 3rd IEEE
Symp. Logic in Computer Science, pages 82-90. IEEE Computer Society
Press, 1988.

Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves al-
gebraic confluence. Information and Computation, 114:1-29, 1994.

Randal E. Bryant. Graph based algorithms for boolean function manipula-
tion. IEEE Trans. Comp., 35(8):677-691, 1986.

Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
Mathematisches Institut der Universitat Innsbruck, 1965.

Bruno Buchberger. Ein algorithmisches Kriterium fiir die Losbarkeit eines
algebraischen Gleichungssystems. Aequationes Mathematicae, 4, 1970.
Bruno Buchberger. Some properties of Grobner-bases for polynomial ideals.
ACM SIGSAM Bulletin, 10(4):19-24, 1976.

Bruno Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. ACM SIGSAM Bulletin, 10(3):19-29, 1976.

Bruno Buchberger. Grébner bases: An algorithmic method in polynomial
ideal theory. In N. K. Bose, editor, Multidimensional Systems Theory, pages
184-232. Reidel, 1985.

Bruno Buchberger. Basic features and development of the critical pair com-
pletion procedure. In J. P. Jouannaud, editor, Rewriting Techniques and
Applications, volume 202 of LNCS, pages 1-45. Springer-Verlag, 1986.
Bruno Buchberger. History and basic features of the critical-pair/completion
procedure. J. Symbolic Computation, 3:3—38, 1987.

Bruno Buchberger. Applications of Grébner bases in non-linear computa-
tional geometry. In R. Janssen, editor, Trends in Computer Algebra, volume
296 of LNCS, pages 52-80. Springer-Verlag, 1988.

Bruno Buchberger and Riidiger Loos. Algebraic simplification. Computing,
Supplement 4:11-43, 1982.

Reinhard Biindgen. Simulating Buchberger’s algorithm by Knuth-Bendix
completion. In R.V. Book, editor, Rewriting Techniques and Applications,
volume 488 of LNCS, pages 386—397. Springer-Verlag, 1991.

Wolfram Biittner. Unification in the data structure multiset. J. Automated
Reasoning, 2:75-88, 1986.

Wolfram Biittner and Helmut Simonis. Embedding boolean expressions into
logic programming. J. Symbolic Computation, 4:191-205, 1987.

Philippe Le Chenadec. Canonical Forms in Finitely Presented Algebras.
Research Notes in Theoretical Computer Science. Pitman, 1986.

Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems
by polynomial interpretations and its implementation. Science of Computer
Programming, 9(2):137-160, 1987.

Alonzo Church. A formulation of the simple theory of types. J. Symbolic
Logic, 5:56—68, 1940.

Alonzo Church and J. Barkley Rosser. Some properties of conversion. Trans.
AMS, 39:472-482, 1936.

[52]

[53]
[54]
[55]
[56]
[57)

[58]

[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

Bibliography 287

Adam Cichon and Pierre Lescanne. Polynomial interpretations and the
complexity of algorithms. In D. Kapur, editor, Automated Deduction —
CADE-11, volume 607 of LNCS, pages 139-147. Springer-Verlag, 1992.
Michael Clausen and Albrecht Fortenbacher. Efficient solution of linear
diophantine equations. J. Symbolic Computation, 8:201-216, 1989.
William F. Clocksin and Christopher S. Mellish. Programming in Prolog.
Springer-Verlag, 2nd edition, 1984.

Paul M. Cohn. Universal Algebra. Reidel, 2nd edition, 1981.

Hubert Comon. Sequentiality, second-order monadic logic and tree auto-
mata. In 10th IEEE Symp. Logic in Computer Science, pages 508-517.
IEEE Computer Society Press, 1995.

Evelyne Contejean and Hervé Devie. An efficient incremental algorithm for
solving systems of linear diophantine equations. Information and Compu-
tation, 113:143-172, 1994.

Jacques Corbin and Michel Bidoit. A rehabilitation of Robinson’s unification
algorithm. In R. Pavon, editor, Information Processing 83, pages 909-914.
North-Holland, 1983.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press, 1990.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25:95-169, 1983.

Haskell B. Curry and Robert Feys. Combinatory Logic, Vol. 1. North-
Holland, 1958.

Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory
Logic, Vol. II. North-Holland, 1972.

David Cyrluk, Patrick Lincoln, and Natarajan Shankar. On Shostak’s deci-
sion procedure for combinations of theories. In M. McRobbie and J. Slaney,
editors, Automated Deduction — CADE-13, volume 1104 of LNCS, pages
463-477. Springer-Verlag, 1996.

Max Dauchet. Simulation of Turing machines by a left-linear rewrite rule.
In N. Dershowitz, editor, Rewriting Techniques and Applications, volume
355 of LNCS, pages 109-120. Springer-Verlag, 1989.

Max Dauchet. Simulation of Turing machines by a regular rewrite rule.
Theoretical Computer Science, 103:409-420, 1992.

Max Dauchet, Thierry Heuillard, Pierre Lescanne, and Sophie Tison. Deci-
dability of the confluence of finite ground term rewrite systems and of other
related term rewrite systems. Information and Computation, 88:187-201,
1990.

Max Dauchet and Sophie Tison. Decidability of confluence for ground term
rewriting systems. In Fundamentals of Computation Theory, volume 199 of
LNCS, pages 80-89. Springer-Verlag, 1985.

Max Dauchet and Sophie Tison. The theory of ground rewrite systems is
decidable. In 5th IEEE Symp. Logic in Computer Science, pages 242—-248.
IEEE Computer Society Press, 1990.

Martin Davis. Hilbert’s tenth problem is unsolvable. The Amer. Math.
Monthly, 80:233-269, 1973.

Nachum Dershowitz. A note on simplification orderings. Information Pro-
cessing Letters, 9(5):212-215, 1979.

Nachum Dershowitz. Termination of linear rewriting systems. In S. Even
and O. Kariv, editors, Automata, Languages and Programming, volume 115

288

[72]
[73]
[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]
[82]

[83]

[84]
[85]
[86]

[87]

(88]

[89]
[90]

[91]

Bibliography

of LNCS, pages 448-458. Springer-Verlag, 1981.

Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17:279-301, 1982.

Nachum Dershowitz. Termination of rewriting. J. Symbolic Computation,
3:69-115, 1987.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Formal Models and Semantics, Handbook of Theoretical
Computer Science, Vol. B, pages 243-320. Elsevier—MIT Press, 1990.
Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open
problems in rewriting. In R.V. Book, editor, Rewriting Techniques and
Applications, volume 488 of LNCS, pages 445-456. Springer-Verlag, 1991.
Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465-476, 1979.

Nachum Dershowitz, Leo Marcus, and Andrzej Tarlecki. Existence, uniquen-
ess, and construction of rewrite systems. SIAM J. Computing, 17:629-639,
1988.

Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Canonical condi-
tional rewrite systems. In E. Lusk and R. Overbeek, editors, 9th Int. Conf.
on Automated Deduction, volume 310 of LNCS, pages 538-549. Springer-
Verlag, 1988.

Jeremy Dick, John Kalmus, and Ursula Martin. Automating the Knuth
Bendix ordering. Acta Informatica, 28:95-119, 1990.

Eric Domenjoud. Outils pour la déduction automatique dans les théories
associatives-commutatives. Theése de Doctorat, Université de Nancy I,
France, 1991.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the
common subexpression problem. J. ACM, 27(4):758-771, 1980.

Klaus Drosten. Termersetzungssyteme, volume 210 of Informatik-Fach-
berichte. Springer-Verlag, 1989.

Iréne Durand and Aart Middeldorp. Decidable call by need computations
in term rewriting (extended abstract). In W. McCune, editor, Automated
Deduction — CADE-14, volume 1249 of LNCS, pages 4-18. Springer-Verlag,
1997.

Cynthia Dwork, Paris Kanellakis, and John Mitchell. On the sequential
nature of unification. J. Logic Programming, 1:35-50, 1984.

Cynthia Dwork, Paris Kanellakis, and Larry Stockmeyer. Parallel algo-
rithms for term matching. SIAM J. Computing, 17:711-731, 1988.

Elmar Eder. Properties of substitutions and unifications. J. Symbolic Com-
putation, 1:31-46, 1985.

Francois Fages. Formes Canoniques dans les Algébres Booléennes, et Ap-
plication a la Démonstration Automatique en Logique de Premier Ordre.
These de 3éme cycle, Université Paris VI, 1983.

Frangois Fages. Associative-commutative unification. In R. Shostak, editor,
7th Int. Conf. Automated Deduction, volume 170 of LNCS. Springer-Verlag,
1984.

Francois Fages and Gérard Huet. Complete sets of unifiers and matchers in
equational theories. Theoretical Computer Science, 43:189-200, 1986.
Michael Fay. First-order unification in an equational theory. In Proc. 4th
Workshop on Automated Deduction, pages 161-167, Austin, Texas, 1979.
Miguel Filgueira and Ana P. Toméds. A fast method for finding the ba-

[92]

[93]

[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]

[105)

[106]
[107]

[108]
[109]

[110]
[111]
[112]

[113]

Bibliography 289

sis of nonnegative solutions to a linear diophantine equation. J. Symbolic
Computation, 19:507-526, 1995.

Albrecht Fortenbacher. An algebraic approach to unification under associa-
tivity and commutativity. In J.-P. Jouannaud, editor, Rewriting Techniques
and Applications, volume 202 of LNCS, pages 381-397. Springer-Verlag,
1985.

Jean Gallier, Paliath Narendran, David Plaisted, Stan Raatz, and Wayne
Snyder. An algorithm for finding canonical sets of ground rewrite rules in
polynomial time. J. ACM, 40:1-16, 1993.

Harald Ganzinger. A completion procedure for conditional equations. J.
Symbolic Computation, 11:51-81, 1991.

Michael R. Garey and David S. Johnson. Computers and Intractability. A
Guide to the Theory of NP-Completeness. Freeman and Company, 1979.
Ferenc Gécseg and Istvan Pedk. Algebraic Theory of Automata. Akadémiai
Kiadé, Budapest, 1972.

M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem-proving
environment for higher order logic. Cambridge University Press, 1993.
Bernhard Gramlich. Generalized sufficient conditions for modular termina-
tion of rewriting. Applicable Algebra in Engineering, Communication and
Computing, 5:131-158, 1994.

Bernhard Gramlich. Confluence without termination via parallel critical
pairs. In H. Kirchner, editor, Trees in Algebra and Programming — CAAP
’96, volume 1059 of LNCS, pages 211-225. Springer-Verlag, 1996.

George Gratzer. Universal Algebra. Springer-Verlag, 2nd edition, 1979.
Wolfgang Grobner. Uber die Eliminationstheorie. Monatshefte fir Mathe-
matik, 54:71-78, 1950.

J.R. Guard, F.C. Oglesby, J.H. Bennett, and L.G. Settle. Semi-automated
mathematics. J. ACM, 16:49-62, 1969.

Michael Hanus. The integration of functions into logic programming: From
theory to practice. J. Logic Programming, 19820:583-628, 1994.

Michael Hanus and Herbert Kuchen. Integration of functional and logic
programming. ACM Computing Surveys, 28:306-308, 1996.

Michael Hanus and Christian Prehofer. Higher-order narrowing with defini-
tional trees. In H. Ganzinger, editor, Rewriting Techniques and Applications,
volume 1103 of LNCS, pages 138-152. Springer-Verlag, 1996.

Jean van Heijenoort. From Frege to Géodel. A Source Book in Mathematical
Logic, 1879-1931. Harvard University Press, 1967.

Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD
thesis, University of Paris, 1930.

Jacques Herbrand. Logical Writings. Reidel, 1971.

Gabor T. Herman. Strong computability and variants of the uniform halting
problem. Z. Math. Logik Grundl. Math., 17:115-131, 1971.

Alexander Herold. Combination of Unification Algorithms in Equational
Theories. PhD thesis, Universitat Kaiserslautern, 1987.

Alexander Herold and J6rg H. Siekmann. Unification in Abelian semigroups.
J. Automated Reasoning, 3:247-283, 1987.

J. Roger Hindley. The Church-Rosser Property and a Result in Combinatory
Logic. PhD thesis, University of Newcastle-upon-Tyne, 1964.

J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
A-Calculus. Cambridge University Press, 1986.

290
[114]

[115]

[116]
[117]

[118]

[119]
[120]
[121]

[122]

[123]

[124]
[125]

[126]

[127]
[128]
[129]
[130]

[131]

[132]

Bibliography

Heisuke Hironaka. Resolution of singularities of an algebraic variety over a
field of characteristic zero: I, II. Annals of Math., 79:109-326, 1964.
Dieter Hofbauer and Clemens Lautemann. Termination proofs and the
length of derivations. In N. Dershowitz, editor, Rewriting Techniques and
Applications, volume 355 of LNCS, pages 167-177. Springer-Verlag, 1989.
Jieh Hsiang. Refutational theorem proving using term rewriting systems.
Artificial Intelligence, 25:255-300, 1985.

Gérard Huet. Résolution d’équations dans les langages d’ordre 1,2, ..., w.
These d’Etat, Université Paris VII, 1976.

Gérard Huet. An algorithm to generate the basis of solutions to homoge-
neous linear diophantine equations. Information Processing Letters, T:144—
147, 1978.

Gérard Huet. Confluent reductions: Abstract properties and applications
to term rewriting systems. J. ACM, 27:797-821, 1980.

Gérard Huet. A complete proof of correctness of the Knuth-Bendix com-
pletion procedure. J. Computer and System Sciences, 23:11-21, 1981.
Gérard Huet and Dallas Lankford. On the uniform halting problem for term
rewriting systems. Technical Report 283, IRIA, 1978.

Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting
systems. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson, pages 395-443. MIT Press, 1991.
Heinrich Humann. Unification in conditional equational theories. In B. Ca-
viness, editor, EUROCAL’85, Proc. Vol. 2, volume 204 of LNCS, pages
543-553. Springer-Verlag, 1985.

Nathan Jacobson. Basic Algebra, Vol. 1. Freeman, 2nd edition, 1985.
Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract
algebras: A rule-based survey of unification. In Jean-Louis Lassez and
Gordon Plotkin, editors, Computational Logic: Essays in Honor of Alan
Robinson, pages 257-321. MIT Press, 1991.

Jean-Pierre Jouannaud, Claude Kirchner, and Héléne Kirchner. Incremental
construction of unification algorithms in equational theories. In J. Diaz,
editor, Automata, Languages and Programming, volume 154 of LNCS, pages
361-373. Springer-Verlag, 1983.

Jean-Pierre Jouannaud and Héléne Kirchner. Completion of a set of rules
modulo a set of equations. SIAM J. Computing, 15:1155-1196, 1986.
Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems.
Theoretical Computer Science, 173:349-391, 1997.

Jean-Pierre Jouannaud and Albert Rubio. A recursive path ordering for
higher-order terms in 77-long S-normal form. In H. Ganzinger, editor, Rewrit-
ing Techniques and Applications, volume 1103 of LNCS, pages 108-122.
Springer-Verlag, 1996.

Samuel Kamin and Jean-Jacques Lévy. Two generalizations of the recursive
path ordering. University of Illinois at Urbana-Champaign. Unpublished
manuscript, 1980.

Abdelilah Kandri-Rody and Deepak Kapur. Computing a Grébner basis
of a polynomial ideal over a Euclidean domain. J. Symbolic Computation,
6:37-57, 1988.

Abdelilah Kandri-Rody, Deepak Kapur, and Franz Winkler. Knuth-Bendix
procedure and Buchberger algorithm—a synthesis. In Proc. ACM-SIGSAM
Int. Symp. Symbolic and Algebraic Computation, ISSAC ’89, pages 55-67.

[133]
[134]

[135]

[136]

[137]
[138]
[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]
[147]
[148]

[149]
[150]

[151]

[152]

Bibliography 291

ACM Press, 1989.

Paris Kanellakis and Peter Z. Revesz. On the relationship of congruence
closure and unification. J. Symbolic Computation, 7:427-444, 1989.
Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science,
33:175-193, 1984.

Deepak Kapur and Paliath Narendran. Complexity of unification problems
with associative-commutative operators. J. Automated Reasoning, 9:261—
288, 1992.

Deepak Kapur, Paliath Narendran, and Friedrich Otto. On ground-
confluence of term rewriting systems. Information and Computation, 86:14—
31, 1990.

Narendran K. Karmarkar. A new polynomial-time algorithm for linear pro-
gramming. Combinatorica, 4:373-395, 1984.

J. Richard Kennaway. Sequential evaluation strategies for parallel-or and
related reduction systems. Ann. of Pure and Applied Logic, 43:31-56, 1989.
Claude Kirchner. Méthodes et Outils de Conception Systématique

d’Algorithmes d’Unification dans les Théories E‘quationelles. These d’état,
Université de Nancy I, France, 1985.

Jan Willem Klop. Combinatory Reduction Systems. Mathematical Centre
Tracts 127. Mathematisch Centrum, Amsterdam, 1980.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, D.M. Gab-
bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 2-116. Oxford University Press, 1992.

Jan Willem Klop and Aart Middeldorp. Sequentiality in orthogonal term
rewriting systems. J. Symbolic Computation, 12:161-195, 1991.

Jan Willem Klop, Aart Middeldorp, Yoshihito Toyama, and Roel de Vrij-
er. Modularity of confluence: A simplified proof. Information Processing
Letters, 49:101-109, 1994.

Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-
binatory reduction systems: Introduction and survey. Theoretical Computer
Science, 121:279-308, 1993.

Donald E. Knuth and P.B. Bendix. Simple word problems in universal
algebra. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-297. Pergamon Press, 1970.

Dexter Kozen. Complexity of Finitely Presented Algebras. PhD thesis,
Cornell University, May 1977.

Dexter Kozen. Complexity of finitely presented algebras. In Proc. 9th ACM
Symp. Theory of Computing, pages 164-177, 1977.

Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. In 6th IEEE Symp. Logic in Computer Science, pages
214-225. IEEE Computer Society Press, 1991.

Mukkai S. Krishnamoorthy and Paliath Narendran. On recursive path or-
dering (note). Theoretical Computer Science, 40:323-328, 1985.

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s con-
jecture. Trans. AMS, 95:210-225, 1960.

Wolfgang Kiichlin. A confluence criterion based on the generalized Newman
lemma. In B. Caviness, editor, EUROCAL’85, Proc. Vol. 2, volume 204 of
LNCS, pages 543-553. Springer-Verlag, 1985.

Masahito Kurihara and Azuma Ohuchi. Modularity of simple termination
of term rewriting systems with shared constructors. Theoretical Computer

292

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]
[164]
[165]

[166]

[167)

[168]

[169]

[170]

[171]

Bibliography

Science, 103:273-282, 1992.

Masahito Kurihara and Azuma Ohuchi. Modularity in noncopying term
rewriting. Theoretical Computer Science, 152:139-196, 1995.

Jean-Luc Lambert. Une borne pour les générateurs des solutions entiéres
positives d’une équation diophantienne linéaire. = Comptes Rendus de
I’Académie des Sciences de Paris, 305:39—-40, 1987.

Dallas Lankford. Canonical algebraic simplification in computational logic.
Technical Report ATP-25, Department of Mathematics, University of Texas,
Austin, 1975.

Dallas Lankford. On proving term rewriting systems are Noetherian. Tech-
nical Report MTP-3, Mathematics Department, Louisiana Tech University,
Ruston, 1979.

Dallas Lankford, G. Butler, and B. Brady. Abelian group unification al-
gorithms for elementary terms. Contemporary Mathematics, 29:193-199,
1984.

Jean-Louis Lassez, Michael Maher, and Kim Mariott. Unification revisi-
ted. In Jeff Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 587-625. Morgan Kaufman, 1987.

Patrick Lincoln and Jim Christian. Adventures in associative-commutative
unification. J. Symbolic Computation, 8:217-240, 1989.

Mike Livesey and Jorg H. Siekmann. Unification of AC-terms (bags) and
ACI-terms (sets). Internal report, University of Essex, 1975. Also published
as Technical Report 3-76, Universitat Karlsruhe, 1976.

Riidiger Loos. Term reduction systems and algebraic algorithms. In
J. Siekmann, editor, Proc. 5th German Workshop on Artificial Intelligence,
GWAI’81, volume 47 of Informatik Fachberichte, pages 214-234. Springer-
Verlag, 1981.

Carlos Alberto Lorifa-Sdenz. A Theoretical Framework for Reasoning about
Program Construction Based on Extensions of Rewrite Systems. PhD thesis,
Universitat Kaiserslautern, 1993.

Leopold Léwenheim. Uber das Auflésungsproblem im logischen Klassen-
kalkiil. Sitzungsberichte Berliner Math. Gesell., 7:89-94, 1908.

Zohar Manna and Steven Ness. On the termination of Markov algorithms.
In Proc. Third Hawaii Int. Conf. System Science, pages 789-792, 1970.
Alberto Martelli and Ugo Montanari. An efficient unification algorithm.
ACM Trans. Programming Languages and Systems, 4(2):258-282, 1982.
Alberto Martelli and Gianfranco Rossi. Efficient unification with infinite
terms in logic programming. In Proc. Int. Conf. Fifth Generation Computer
Systems, pages 202-209. ICOT, 1984.

Ursula Martin and Tobias Nipkow. Boolean unification. J. Automated Rea-
soning, 4:381-396, 1988.

Ursula Martin and Tobias Nipkow. Boolean unification — the story so
far. J. Symbolic Computation, 7:275-293, 1989. Reprinted in C. Kirchner,
Unification, pages 437-455. Academic Press, 1990.

Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In
M.E. Stickel, editor, 10th Int. Conf. Automated Deduction, volume 449 of
LNCS, pages 366—380. Springer-Verlag, 1990.

Yuri Matijasevich. Simple examples of undecidable associative calculi. So-
viet Mathematics (Doklady), 8(2):555-557, 1967.

Yuri Matiyasevich and Géraud Sénizergues. Decision problems for semi-

[172]

[173]

[174]

[175]

[176]
[177]
[178]

[179]

[180]

[181]

[182]
[183]
[184]
[185]

[186]

[187]
[188]
[189]

[190]

191

Bibliography 293

Thue systems with a few rules. In 11th IEEE Symp. Logic in Computer
Science, pages 523-531. IEEE Computer Society Press, 1996.

Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1984.

Karl Meinke and John Tucker. Universal algebra. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 1, pages 189-411. Oxford University Press, 1992.

Yves Métivier. About the rewriting systems produced by the Knuth-Bendix
completion algorithm. Information Processing Letters, 16:31-34, 1983.
Aart Middeldorp. A sufficient condition for the termination of the direct
sum of term rewriting systems. In 4th IEEE Symp. Logic in Computer
Science, pages 396-401. IEEE Computer Society Press, 1989.

Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD
thesis, Vrije Universiteit, Amsterdam, 1990.

Aart Middeldorp. Modular properties of conditional term rewriting systems.
Information and Computation, 104:110-158, 1993.

Aart Middeldorp. Completeness of combinations of conditional constructor
systems. J. Symbolic Computation, 17:3-21, 1994.

Aart Middeldorp. Call by need computations to root-stable form. In
Proc. 24th ACM Symp. Principles of Programming Languages, pages 94—
105, 1997.

Aart Middeldorp and Erik Hamoen. Completeness results for basic narrow-
ing. Applicable Algebra in Engineering, Communication and Computing,
5:213-253, 1994.

Aart Middeldorp and Hans Zantema. Simple termination revisited. In
A. Bundy, editor, Automated Deduction — CADE-12, volume 814 of LNCS,
pages 451-465. Springer-Verlag, 1994.

John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cam-
bridge Philosophical Society, 59:833-835, 1963.

Greg Nelson and Derek C. Oppen. Fast decision procedures based on con-
gruence closure. J. ACM, 27:356-364, 1980.

M. H. A. Newman. On theories with a combinatorial definition of ‘equiva-
lence’. Annals of Mathematics, 43(2):223-243, 1942.

Tobias Nipkow. Combining matching algorithms: The regular case. In
N. Dershowitz, editor, Rewriting Techniques and Applications, volume 355
of LNCS, pages 343-358. Springer-Verlag, 1989.

Tobias Nipkow. Unification in primal algebras, their powers and their va-
rieties. J. ACM, 37:742-776, 1990.

Tobias Nipkow. Combining matching algorithms: The regular case. J.
Symbolic Computation, 12(6):633-653, 1991.

Tobias Nipkow. Higher-order critical pairs. In 6th IEEE Symp. Logic in
Computer Science, pages 342-349. IEEE Computer Society Press, 1991.
Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. In
M. Bezem and J.F. Groote, editors, Proc. Int. Conf. Typed Lambda Calculi
and Applications, volume 664 of LNCS, pages 306-317. Springer-Verlag,
1993.

Werner Nutt. Unification in monoidal theories. In M.E. Stickel, editor,

294

[192]

[193]

[194]
[195]
[196]

[197)

[198]
[199]
[200]
[201]

[202]
[203]

[204)

[205]

[206]

[207]

[208]

[209]

[210]

Bibliography

10th Int. Conf. Automated Deduction, volume 449 of LNCS, pages 618-632.
Springer-Verlag, 1990.

Michael J. O’Donnell. Computing in Systems Described by Equations, vo-
lume 58 of LNCS. Springer-Verlag, 1977.

Enno Ohlebusch. A simple proof of sufficient conditions for the termination
of the disjoint union of term rewriting systems. Bull. European Association
for Theoretical Computer Science, 49:178-183, 1993.

Enno Ohlebusch. On the modularity of termination of term rewriting sys-
tems. Theoretical Computer Science, 136:333-360, 1994.

Vincent van Qostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit, Amsterdam, 1994.

Vincent van Oostrom. Developing developments. Theoretical Computer
Science, 175:159-181, 1997.

Vincent van Oostrom and Femke van Raamsdonk. Weak orthogonality
implies confluence: The higher-order case. In A. Nerode, editor, Logical
Foundations of Computer Science, volume 813 of LNCS, pages 379-392.
Springer-Verlag, 1994.

Mike S. Paterson and Mark N. Wegman. Linear unification. J. Computer
and System Sciences, 16:158-167, 1978.

Lawrence C. Paulson. Verifying the unification algorithm in LCF. Science
of Computer Programming, 5:143-169, 1985.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
LNCS. Springer-Verlag, 1994.

Lawrence C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, 2nd edition, 1996.

Gerald E. Peterson. Complete sets of reductions with constraints. In M.E.
Stickel, editor, 10th Int. Conf. Automated Deduction, volume 449 of LNCS,
pages 366-380. Springer-Verlag, 1990.

Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for
some equational theories. J. ACM, 28:223-264, 1981.

David A. Plaisted. Equational reasoning and term rewriting systems. In
D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 1, pages 274-367.
Oxford University Press, 1993.

Gordon Plotkin. Building-in equational theories. Machine Intelligence,
7:73-90, 1972.

Detlef Plump. Implementing term rewriting by graph reduction: Termina-
tion of combined systems. In S. Kaplan and M. Okada, editors, Conditional
and Typed Rewriting Systems — CTRS’90, volume 516 of LNCS, pages
307-317. Springer-Verlag, 1991.

Jaco van de Pol and Helmut Schwichtenberg. Strict functionals for ter-
mination proofs. In M. Dezani-Ciancaglini and G. Plotkin, editors, T¥-
ped Lambda Calculi and Applications, volume 902 of LNCS, pages 350-364.
Springer-Verlag, 1995.

Loic Pottier. Minimal solutions of linear diophantine equations: Bounds and
algorithms. In R.V. Book, editor, Rewriting Techniques and Applications,
volume 488 of LNCS, pages 162-173. Springer-Verlag, 1991.

Christian Prehofer. Higher-order narrowing. In 9th IEEE Symp. Logic in
Computer Science, pages 507-516. IEEE Computer Society Press, 1994.
Christian Prehofer. A call-by-need strategy for higher-order functional-logic

[211]

[212]

[213]

[214]
[215]
[216]
[217]
18]
[219]
[220]

[221]

[222]
[223]
[224]
[225]
[226]
[227]

[228]

[229]
[230]
[231]

[232]

Bibliography 295

programming. In J. Lloyd, editor, Logic Programming, pages 147-161. MIT
Press, 1995.

Christian Prehofer. Solving higher-order equations: From logic to program-
ming. Technical Report 19508, Technische Universitat, Miinchen, 1995. PhD
Thesis.

Femke van Raamsdonk. Confluence and Normalization for Higher-Order
Rewriting. PhD thesis, Vrije Universiteit, Amsterdam, 1996.

Femke van Raamsdonk. Outermost-fair rewriting. In J.R. Hindley, editor,
Typed Lambda Calculi and Applications, volume 1210 of LNCS, pages 284—
299. Springer-Verlag, 1997.

Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equiva-
lence between recursive programs. J. ACM, 27:772-796, 1980.

V.N. Redko. On defining relations for the algebra of regular events. Ukrains-
kii Matematicheskii Zhurnal, 16:120-126, 1964. In Russian.

J.A. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12:23-41, 1965.

Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems.
J. ACM, 20:160-187, 1973.

Joseph G. Rosenstein. Linear Orderings. Academic Press, 1982.

Sergiu Rudeanu. Boolean Functions and Equations. North-Holland, 1974.
Michael Rusinowitch. On termination for the direct sum of term rewriting
systems. Information Processing Letters, 26:65-70, 1987.

Andrea Sattler-Klein. About changing the ordering during Knuth-Bendix
completion. In STACS 9/, Symposium on Theoretical Aspects of Computer
Science, pages 175-186, 1994.

Manfred Schmidt-SchauB. Unification under associativity and idempotence
is of type nullary. J. Automated Reasoning, 2:277-282, 1986.

Manfred Schmidt-Schau. Combination of unification algorithms. J. Sym-
bolic Computation, 8:51-100, 1989.

Manfred Schmidt-Schau8. Computational Aspects of an Order-Sorted Logic
with Term Declarations, volume 395 of LNCS. Springer-Verlag, 1989.
Manfred Schmidt-Schaufl;, Massimo Marchiori, and Sven Eric Panitz. Modu-
lar termination of r-consistent and left-linear term rewriting systems. Theo-
retical Computer Science, 149:361-374, 1995.

Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

A. Selman. Completeness of calculi for axiomatically defined classes of
algebras. Algebra Universalis, 2:20-32, 1972.

Géraud Sénizergues. On the termination-problem for one-rule semi-Thue
systems. In H. Ganzinger, editor, Rewriting Techniques and Applications,
LNCS, pages 302-316. Springer-Verlag, 1996.

Robert E. Shostak. An algorithm for reasoning about equality. Communi-
cations of the ACM, 21:583-585, 1978.

Robert E. Shostak. Deciding combinations of theories. J. ACM, 31:1-12,
1984.

Jorg H. Siekmann. Unification and Matching Problems. PhD thesis, Essex
University, 1978. Memo CSA-4-78.

Jorg H. Siekmann. Unification of commutative terms. In Proc. Int. Sympo-
sium on Symbolic and Algebraic Manipulation, EUROSAM-79, volume 72
of LNCS, pages 531-545. Springer-Verlag, 1979.

296
[233]
[234)

[235]

[236]

[237]
[238]
[239]
[240]

[241]

[242]
[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

Bibliography

Jorg H. Siekmann. Unification theory: A survey. J. Symbolic Computation,
7:207-274, 1989.

James R. Slagle. Automated theorem proving for theories with simplifiers,
commutativity and associativity. J. ACM, 21:622-642, 1974.

Wayne Snyder. A fast algorithm for generating reduced ground rewriting
systems from a set of ground equations. J. Symbolic Computation, 15:415—
450, 1993.

Mark E. Stickel. A complete unification algorithm for associative-
commutative functions. In Proc. 4th Int. Joint Conf. Artificial Intelligence,
IJCAI-75, pages 71-82, Thlisi, USSR, 1975.

Mark E. Stickel. A unification algorithm for associative-commutative func-
tions. J. ACM, 28:423-434, 1981.

Sabine Stifter. A generalization of reduction rings. J. Symbolic Computa-
tion, 4:351-364, 1987.

Alfred Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1951.

Erik Tidén. First-Order Unification in Combinations of Equational Theo-
ries. PhD thesis, Royal Institute of Technology, Stockholm, 1986.
Yoshihito Toyama. On the Church-Rosser property of term rewriting sys-
tems. Technical Report NTT ECL TR 17672, NTT, December 1981. In
Japanese.

Yoshihito Toyama. Counterexamples to termination for the direct sum of
term rewriting systems. Information Processing Letters, 25:141-143, 1987.
Yoshihito Toyama. On the Church-Rosser property for the direct sum of
term rewriting systems. J. ACM, 34:128-143, 1987.

Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fu-
chi and L. Kott, editors, Programming of Future Generation Computers,
volume II, pages 393-407. Elsevier Science, 1988.

Yoshihito Toyama, Jan Willem Klop, and Henk Pieter Barendregt. Termi-
nation for direct sums of left-linear complete term rewriting systems. J.
ACM, 42:1275-1304, 1995.

Wolfgang Wechler. Universal Algebra for Computer Scientists. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1992.
Volker Weispfenning and Thomas Becker. Grobner Bases: A Computatio-
nal Approach to Commutative Algebra. Graduate Texts in Mathematics.
Springer-Verlag, 1993.

Franz Winkler. Reducing the complexity of the Knuth-Bendix completion
algorithm: A ‘unification’ of different approaches. In B. Caviness, editor,
EUROCAL’85, Proc. Vol. 2, volume 204 of LNCS, pages 378-389. Springer-
Verlag, 1985.

Franz Winkler and Bruno Buchberger. A criterion for eliminating unneces-
sary reductions in the Knuth-Bendix algorithm. In Proc. Coll. on Algebra,
Combinatorics and Logic in Computer Science, pages 849-869, Gyor, Hun-
gary, 1983.

Hans Zantema and Alfons Geser. A complete characterization of termination
of 0?19 — 170%°. In Rewriting Techniques and Applications, volume 914 of
LNCS, pages 41-55. Springer-Verlag, 1995.

Hantao Zhang and Deepak Kapur. Consider only general superpositions in
completion procedures. In N. Dershowitz, editor, Rewriting Techniques and
Applications, volume 355 of LNCS, pages 513—-527. Springer-Verlag, 1989.

Index

Page numbers given in boldface refer to definitions.

2, 251 —, 8
=7 71,72 &8
45 &g, 40, 41, 55
~, 166 =, 148
N 3950 55 —p 39
~f 224 > 308
Eg on substitutions, 225 x
> —g, 40
~ on substitutions, 71 B, 203

on terms, 39 [, 36
>;kez’ 19 HIGI A";’ 46
>4, 107 A/~ 276
>Lex 19 -A/59 45
>maul; 22 lly 36
> emby 112 |15, 111, 124
7, 166 ||z, 103, 124, 237
3, 166 Fec, 166
> on positions, 36 =, 50, 50
Zmul, 25 -, 42
>kboy 124 Fa, 95
>ipoy 118 Aliens, 216
>mpo, 121 Ba, 251
>c, 173 CCs(G), 64
11, 279 DE(S), 239
o, 282 Dom, 38
3, 34 H(.), 190
n(n), 34 HC(.), 190
Sm, 95 K[X1,...,Xn], 187
o, 8 K;, 96
Xleg; 18 M, 21
&8 Mp, 190
'S Mi,(S), 239
:’ 8 My, m(0), 238
—, 8 N[X1,...,Xn], 105
58 Pf, 105
i Pos, 36
e 8 P,, 106
Sg, 166 R(-), 190
—, 8 . R, 96

297

298

Ran, 38
5(-), 194
Sig, 224
Sub, 38
T(X), 38
T(Z, X), 35
T(%,X), 49
Ug, 224
YRan, 38
Var, 37
V(E), 50
f(3n), 59
fs“, 44
(1), 35
fA/=, 45
8|, 37
s(t]p, 37
Un(s), 237

above, 36
abstract reduction system, 7
Ackermann’s function, 21, 110, 111, 121
acyclic, 15
admissible, 190, 244
algebra, 44
free, 47
generated by, 44, 47
initial, 47, 48, 53
quotient, 45
term, 49
alien subterms, 201
and, 281
antisymmetric, 276
arity, 34

below, 36

Birkhoff’s Theorem, 55

Boolean unification, 253, 250262
bounded, 15

Buchberger’s algorithm, 197, 196-198

carrier, 44
Church-Rosser, 9
closed, 62
under X-operations, 41
under substitutions, 40, 102
closure, 8
reflexive, 8
symmetric, 8
transitive, 8
coefficient, 188
collapse, 215
collapse-free, 213
collapsing
at level, 203
rule, 203
combinatory logic, 60
Commutation Lemma, 32
commutative symbol, 230
Commutative Union Lemma, 31
commute, 31

Index

commuting diamond property, 31
compatible
with X-contexts, 41
with Y-operations, 41, 102
complete set of E-unifiers, 226
completion, 158—-186
basic, 160, 160-164
Huet’s procedure, 179, 178-184
improved, 165, 164-171
procedure, 167
composition
of homomorphisms, 45
of relations, 8
of substitutions, 39
concat, 282
conditional rewriting, 269-270
configuration, 95
configuration term, 96
confluence, 28-33, 134-157
confluent, 9
locally, 28
strongly, 30
congruence, 45
fully invariant, 51
on term graphs, 66
congruence closure, 62, 62-71
complexity of, 70, 91
on term graphs, 66
constant symbol, 34
constructor, 150, 283
context, 201
contraction, 61
convergent, 9
correct completion procedure, 169
critical overlap, 139
critical pair, 139, 135-144
parallel, 156
Critical Pair Lemma, 140
Critical Pair Theorem, 140

\

dag, 82

decision procedure, 228
degree, 188

diamond property, 30
diophantine equation, 239
direct product, 46

disjoint union of TRSs, 201
domain of substitution, 38
duplicating rule, 203
duplicating step, 204

E-instance, 225
E-matcher, 229
E-matching, 229
encompassment, 166
endomorphism, 45
EQ, 26

equation, 50, 72, 224
equational class, 49-57
equational logic, 42
equational theory, 50

Index 299

equivalence class, 276 ideal, 188
equivalence relation, 276 congruence, 188
equivalent proofs, 172 generated by, 188
equivalent w.r.t. —, 7 membership, 189
equivalent, TRS and set of identities, 160 idempotent, 72
E-solution, 224 identity, 8, 39, 49, 50
E-unifiable, 224 conditional, 269-270
E-unification, 223264 ground, 62
algorithm, 228 induction, well-founded, 13
decision procedure, 228 inductive theory, 53
problem, 224 infinitary, 227
elementary, 224 initial algebra, 47, 48, 53
general, 224 inner reduction, 203
with constants, 224 instance
procedure, 228 of substitution, 71
E-unifier, 224 of term, 39
complete set, 226 instantiate, 38
minimal complete set, 226 interpretation method, 104-111
most general, 226 interreduced, 182
exception, 283 inverse, 8
exists, 282 inverse image, 16
extended C-unification problem, 231 irreducible, 9
extension irreflexive, 276
of substitution, 38 isomorphic, 45
to homomorphism, 47 isomorphism, 45
fair completion procedure, 170 joinable, 9
fair run, 170
finitary, 227 kernel, 45
finitely branching, 15 Knuth-Bendix order, 124, 124-130
fn, 282 Koénig’s Lemma, 15
forall, 282
free algebra, 47 least, 277
free in V(E), 52-54 left-linear, 145
free symbol, 230 left-reduced, 142
fully invariant congruence, 51 let, 279
fun, 280 lez, 27
function symbol, 34 lexicographic order, 19
in ML, 27
generating set, 240 lexicographic path order, 118
globally finite, 15 lexicographic product, 18
GR, 26 of partial orders, 20
Grobner basis, 193, 193-196 of quasi-orders, 21
greatest, 277 lhs, 39
ground confluent, 135 lift, 79
ground identity, 62 linear order, 277
ground term, 38 linear term, 145
ground word problem, 59 locally confluent, 28

lower bound, 277
halting problem, 95

handle, 283 many-sorted, 35
head coefficient, 190 map, 282

head monomial, 190 match, 78
higher-order rewriting, 270-271 matcher, 78
Hilbert’s 10th Problem, 108, 110 modulo ~g, 229
holds, identity, 50 matching, 59, 78
homeomorphic embedding, 112 modulo X g, 229
homogeneous linear diophantine equation, 2839 maximal, 277
homomorphic image, 45 measure function, 16
homomorphism, 44, 47 mgu, 72

canonical, 45, 51 modulo ~g, 226

300

minimal, 277
minimal complete set of E-unifiers, 226
ML, 278-283
model, 50
modular, 201
monomial, 188, 251
occurs, 188
monotone, 16
monotone function, 104
monotone polynomial, 106
monotone polynomial interpretation, 106
mul, 27
multiset, 21
multiset order, 22
in ML, 27
multiset path order, 118, 121
mutually orthogonal, 208
weakly, 211

narrowing, 273-275
Newman’s Lemma, 29
NGE, 26

Noetherian, 14
non-critical overlap, 137
norm, 81

normal form, 9
normalizing, 9

null, 282

occurs check, 77, 81, 84, 86-90
order, 276277
in ML, 2628
Knuth-Bendix, 124, 124-130
lexicographic, 19
in ML, 27
lexicographic path, 118
linear, 277
multiset, 22
in ML, 27
multiset path, 118, 121
partial, 276
polynomial, 107, 105-111
polynomial simplification, 117, 117-118
quasi-, 277
recursive path, 118-123
with status, 118, 121
reduction, 102, 101-104
rewrite, 102
simplification, 111, 111-131
strict, 276
total, 277
well-partial-, 113
well-quasi-, 132
order, 26
order-sorted, 35
ordered rewriting, 267-268
orthogonal, 147
mutually, 208
weakly, 211
weakly, 155
outer reduction, 203

Index

overlap, 139
critical, 139
non-critical, 137

parallel, 36

parallel closed, 153

Parallel Closure Theorem, 154

parallel critical pair, 156

Parallel Moves Lemma, 152

parallel positions, 148

parallel reduction, 148

partial order, 276

pattern, 281

persistent identities, 167

persistent rules, 167

polynomial, 105, 187, 251

polynomial form, 252

polynomial interpretation, 105
over R, 117

polynomial order, 107, 105-111

polynomial ring, 187

polynomial simplification order, 117, 117-118

position, 36
prefix order, 36
primitive recursive function, 110, 121, 129
proof, 172
order, 172, 172-177
step, 172
tree, 42
pure, 201

quasi-order, 277
quotient algebra, 45
quotient set, 276

raise, 283

range, 38

rank, 201

recursive path order, 118-123
with status, 118, 121

redex, 61

reducible, 9

reduction, 7

reduction order, 102, 101-104

reduction relation
induced by identities, 39
induced by polynomial, 191

reduction strategy, 271-273

reflexive, 276

reflexive closure, 8

regular, 229

remainder, 190

renaming, 72

replace subterm at position, 37

reproductive solution, 256

reproductive unifier, 255

rewrite order, 102

rewrite proof, 172

rewrite relation, 61

rewrite rule, 61

rewriting

conditional, 269270
higher-order, 270-271
modulo identities, 265-267
ordered, 267-268
rhs, 39
right-ground, 99
right-linear, 145
right-reduced, 101
root position, 36
root symbol, 36
run, 167
failing, 169
fair, 170
successful, 168

S-polynomial, 194
satisfiable, 58
semantic consequence, 50
semi-confluent, 11
sequence

bad, 113

good, 113
signature, 34
simplification order, 111, 111-131
size, 36
solution, 72

minimal nontrivial, 245

modulo X g, 224
solved form, 73

of extended problem, 231
sound, 167
strict order, 276
strict part, 276
Strong Confluence Lemma, 145
strongly commute, 31
strongly confluent, 30
strongly joinable, 145
subalgebra, 44

generated by, 44
substitution, 38, 49

erasing, 244
subterm at position, 37
subterm property, 111
successor, 9

direct, 9
symmetric, 276
symmetric closure, 8

term, 35
cyclic, 91, 92
ground, 38
term, 79
term algebra, 49
term graph, 66
term rewriting system, 61
terminating, 9
termination, 93—-133
theory
equational, 50
inductive, 53
theory, 214

Index

total on ground terms, 103, 130
total order, 277

transitive, 276

transitive closure, 8

tree representing a term, 35
trivial set of identities, 50

TRS, 61

Turing machine, 94

unifiable, 72
unification, 71-91
complexity of, 92
modulo ~ g, 223-264
problem, 72
modulo X g, 224
type, 227
unifier, 72
modulo x~g, 224
most general, 72
most general modulo ~g, 226
uniform halting problem, 95
unify, 80
unitary, 227
universal algebra, 34-57
upper bound, 277

val, 279
valid, 58
variable, 35

occurring in term, 37
variable position, 37
variable range, 38
variety, 50, 56

weakly orthogonal, 155
mutually, 211

weight function, 124
admissible, 124

well-founded, 14

well-founded induction, 13

well-partial-order, 113

well-quasi-order, 132

word problem, 59

wpo, 113

zero, 227
zip, 281

301

	Contents
	Preface
	1. Motivating Examples
	2. Abstract Reduction Systems
	1. Equivalence and reduction
	1. Basic definitions
	2. Basic results

	2. Well-founded induction
	3. Proving termination
	4. Lexicographic orders
	5. Multiset orders
	6. Orders in ML
	1. Lexicographic orders
	2. Multiset orders

	7. Proving confluence
	1. Commutation

	8. Bibliographic notes

	3. Universal Algebra
	1. Terms, substitutions and identities
	2. Algebras, homomorphisms and congruences
	3. Free algebras
	4. Term algebras
	5. Equational classes

	4. Equational Problems
	1. Deciding ≈_E
	2. Term rewriting systems
	3. Congruence closure
	4. Congruence closure on graphs
	5. Syntactic unification
	6. Unification by transformation
	7. Unification and term rewriting in ML
	8. Unification of term graphs
	1. A quadratic algorithm
	2. An almost linear algorithm
	3. The complexity of sharing

	9. Bibliographic notes

	5. Termination
	1. The decision problem
	1. Undecidability of the general case
	2. A decidable subcase

	2. Reduction orders
	3. The interpretation method
	4. Simplification orders
	1. Polynomial simplification orders
	2. Recursive path orders
	3. Recursive path orders in ML
	4. Knuth-Bendix orders

	5. Bibliographic notes

	6. Confluence
	1. The decision problem
	2. Critical pairs
	3. Orthogonality
	4. Beyond orthogonality
	5. Bibliographic notes

	7. Completion
	1. The basic completion procedure
	2. An improved completion procedure
	3. Proof orders
	4. Huet's completion procedure
	5. Huet's completion procedure in ML
	6. Bibliographic notes

	8. Groebner Bases and Buchberger's Algorithm
	1. The ideal membership problem
	2. Polynomial reduction
	3. Groebner bases
	4. Buchberger's algorithm
	5. Bibliographic notes

	9. Combination Problems
	1. Basic notions
	2. Termination
	3. Confluence
	1. The disjoint case
	2. The orthogonal case

	4. Combining word problems
	1. The key ideas
	2. The formal solution
	3. Correctness
	4. The implementation in ML

	5. Bibliographic notes

	10. Equational Unification
	1. Basic definitions and results
	2. Commutative functions
	1. A unification algorithm
	2. The decision problem

	3. Associative and commutative functions
	1. Terms as vectors and substitutions as matrices
	2. AC1-unification
	3. AC-unification
	4. Homogeneous linear diophantine equations

	4. Boolean rings
	1. Polynomials
	2. Unification
	3. Loewenheim's formula
	4. Why Loewenheim's formula works
	5. Successive variable elimination
	6. Complexity
	7. Boolean unification in ML

	5. Bibliographic notes

	11. Extensions
	1. Rewriting modulo equational theories
	2. Ordered rewriting
	3. Conditional identities and conditional rewriting
	4. Higher-order rewrite systems
	5. Reduction strategies
	6. Narrowing

	Appendix 1. Ordered sets
	1. Basic definitions

	Appendix 2. A Bluffer's Guide to ML
	1. Types
	2. Expressions
	1. Basic values
	2. Compound expressions

	3. Function declarations
	4. Standard functions
	1. Booleans
	2. Lists

	5. Datatypes
	6. Exceptions

	Bibliography
	Index

