
Mini Project  
Building a Search Engine

Tutorial - 1

Information Retrieval and Extraction CSE474.M20



Project Task

● Data: Wikipedia English Dump ~ 10 GB

○ Ire-wiki-search-sample.tar.gz (180 mb for Phase I)
○ enwiki-latest-pages-articles-multistream.xml.bz2 (for Phase II)

● Index size ~ 2.5-3 GB (less than ¼ of data size)
● Support for field queries
● External tools and libraries like Lucene, WikiXMLj, elasticsearch, redis, etc 

not  allowed.



Mini project

● Phase I
○ Inverted index creation on 180 mb wiki dump
○ Basic query implementation.
○ Evaluation for phase-1 will involve only indexing. 

● Phase II
○ Inverted index creation on whole wiki dump (~ 46 GB)
○ Implement Ranking mechanism
○ End to End search system



Phase I

Wiki XML  
Dump  
180 mb

Indexer
Inverted  
Index



Steps involved in Indexing
1. Parsing
2. Tokenization
3. Case Folding
4. Stop Words Removal
5. Stemming
6. Inverted Index Creation



Parsing
● Whole corpus (~ 46 GB) in single XML file
● Phase I

○ XML dump: 180 MB
○ index size: ~ 45-50 MB
○ Index time: within 2 minutes

● Tool - SAX parser / DOM parser (ElementTree)
● WikiXMLj not allowed



Tokenization & Case folding
● Break sentences into individual words called tokens
● Change case to lower case

● Food for thought
○ State-of-the-art V/s state of the art
○ 12-04-1998
○ O’Neill - neill, oneill, o’neill, o’ neill, o neill



Stop Words Removal
● Highly frequent(common) words are of little value
● a, an, the, and, be, by, for, from, …

● Issues (Food for thought)
○ Let it be, To be or not to be
○ Flights from Mumbai



Stop Words Removal

The time of the Elves… is over. Do  
we leave Middle-Earth to its fate? Do  
we let them stand alone?

time Elves over leave
Middle Earth fate stand alone



Stemming
● Identify root or base word

is, am, are - be

operate, operation, operates, operative - oper

man, men, manliness - man

● Use from the following libraries : pystemmer, nltk (PorterStemmer, 
SnowballStemmer, WordNetLemmatizer), gensim, spacy.

● Choice of library can heavily impact the index creation time.



Inverted Index / Posting 
List

real 2
strider 1
fortun 1
aragorn 1
son 1
arathorn 1
like 1
death 1
save 1

But I am the real Strider, fortunately.I am  
Aragorn son of Arathorn; and if by life or  
death I can save you, I will, I am real.

Real strider fortun aragorn son arathorn life  
death save real

real strider fortunately aragorn son arathorn life  
death save real

do stemming

remove stop words

Document 1

Posting List  
creation



Inverted Index / Posting 
List

live 2
deserve 2
death 2
die 1
life 1
eager 1
deal 1
judgement 1

Many that live deserve death. And some that  
die deserve life. Do not be too eager to deal  
out death in judgement.

live deserve death die deserve life eager 
deal  death judgement

remove stop words

do stemming

Document 2

live deserve death die deserve life eager deal  
death judgement

Posting List
creation



Inverted Index
real 2
strider 1
fortun 1
aragorn 1
son 1
arathorn 1
like 1
death 1
save 1
live 2
deserv 2
death 2
die 1
life 1
eager 1
deal 1
judgement 1

Document 2

Document 1
aragon:d1(1)  
arathorn:d1(1)  
deal:d2(1)  
death:d2(2), d1(1)  
deserv:d2(2)  
die:d2(1)  
eager:d2(1)  
fortun:d1(1)  
judgement:d2(1)  
life:d1(1), d2(1)  
live:d2(2)  
real:d1(2)  
save:d1(1)  
son:d1(1)  
strider:d1(1)

Sorted Index



Handling Multiple Fields (Field Queries)

Wikipedia Fields:

1. Title
2. Body Text
3. Infobox
4. Categories
5. External Links (outlinks)
6. References



Storing Field types in 
Index

● Choose a suitable format for storing field type in index file to support 
field  queries.

● Store type along with frequency and docid

● Plain query - Sachin Tendulkar Sports
● Field query - t:Sachin b:Tendulkar c:Sports



Storing field types in 
Index
Approach 1:

sachin:d1-t1c2b7|d5-t1  
tendulkar:d1-t1b1|d6-c1b1

Approach 2:
sachin-t:d1-1|d5-1  
sachin-c:d1-2  
sachin-b:d1-7  
tendulkar-t:d1-1  
tendulkar-c:d6-1



Points to note

● Design a scalable index module.
● You can reduce index size by using index compression methods

○ Trade-off between search time efficiency and index size

● Search : Try to implement basic search,  reading and parsing 
the index, parsing the query, producing basic results (ranking 
won’t be evaluated in Phase1)

● Think of secondary index if you need to build (mostly in Phase II)

● Programming Language - C++/Python/Java



Plagiarism 

● NO plagiarism will be tolerated.  Copying of code, using someone else’s 
index or any sort of malpractice would lead to a 0 in the mini project.



References
Christopher Manning, Information Retrieval

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
Grossman, Frieder- Information Retrieval (Algorithms and Heuristics) -  

Chapter 2, Chapter 5

Videos  

https://class.coursera.org/nlp/lecture/178  

https://class.coursera.org/nlp/lecture/179  

https://class.coursera.org/nlp/lecture/180

http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://class.coursera.org/nlp/lecture/178
https://class.coursera.org/nlp/lecture/179
https://class.coursera.org/nlp/lecture/180


DOUBTS ?


