Relevance Ranking

Manish Gupta

Today's Agenda

- Need for Relevance Ranking
- TF and IDF
- Vector Space Model

Today's Agenda

- Need for Relevance Ranking
- TF and IDF
- Vector Space Model

Ranked Retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users are incapable of writing Boolean queries.
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

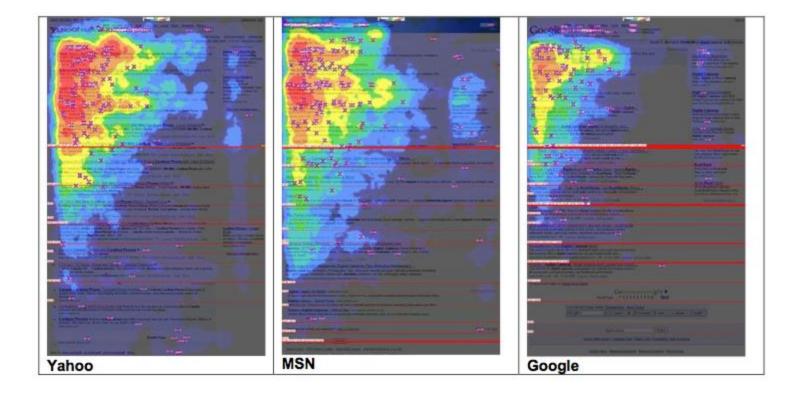
Problem with Boolean search: Feast or Famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Feast or Famine: OK for Ranked Retrieval

- Rather than a set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top) documents in the collection for a query
- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works. Is it true?

Eye Tracking Study on Search Results



2006

http://www.mediative.com/eye-tracking-google-through-the-years/

Scoring as the Basis of Ranked Retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match."

Query-Document Matching Scores

- We need a way of assigning a score to a query/document pair
- Let's start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.
- First take: Jaccard coefficient?

Issues with Jaccard for Scoring

- It doesn't consider *term frequency* (how many times a term occurs in a document)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length

Sec. 6.2

Binary Term-Document Incidence Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Term-Document Count Matrices

- Consider the number of occurrences of a term in a document
 - Each document is a count vector in \mathbb{N}^{v} : a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Today's Agenda

- Need for Relevance Ranking
- TF and IDF
- Vector Space Model

Term Frequency TF

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d.
- Relevance does not increase proportionally with term frequency.
- So use log frequency weighting
- The log frequency weight of term t in d is $w_{td} = 1 + \log_{10} t f_{td}$ if $t f_{td} > 0$; else it is 0.
- Score for a document-query pair: sum over terms *t* in both *q* and *d*

- score = $\sum_{t \in q \cap d} (1 + \log_{10} t f_{td})$

Inverse Document Frequency IDF

- Frequent terms are less informative than rare terms
- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - $df_t \le N$
- $idf_t = \log_{10}\left(\frac{N}{df_t}\right)$
- IDF has no effect on ranking one term queries
 - IDF affects the ranking of documents for queries with at least two terms
 - For the query capricious person, IDF weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

TF-IDF Weighting

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$W_{t,d} = \log(1 + tf_{t,d}) \times \log_{10}(N/df_t)$$

Score(q,d) = $\sum_{t \in q \cap d} tf.idf_{t,d}$

- Score for a document given a query
- There are many variants
 - How "tf" is computed (with/without logs)
 - Whether the terms in the query are also weighted
 - ...

Binary → Count → Weight Matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Ranking in Vector Space Model

- Represent both query and document as vectors in the |V|dimensional space
- Use cosine similarity as the similarity measure
 - Incorporates length normalization automatically (longer vs shorter documents)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \bullet \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \bullet \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term *i* in the query
- *d_i* is the tf-idf weight of term *i* in the document

TF-IDF Weighting has many Variants

Term frequency		Document frequency		Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\max_t(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0, \log \frac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/ <i>u</i>	
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^lpha$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Columns headed 'n' are acronyms for weight schemes. SMART Notation: denotes the combination in use in an engine, with the notation *ddd.qqq*, using the acronyms from the previous table A very standard weighting scheme is: Inc.ltc

Okapi BM25

• Given a query Q, containing keywords q_1, \ldots, q_n , the BM25 score of a document D is:

$$score(D,Q) = \sum_{i=1}^{n} IDF(q_i) \cdot \frac{tf_{q_i,D} \cdot (k_1 + 1)}{tf_{q_i,D} + k_1 \cdot \left(1 - b + b \cdot \frac{|D|}{avgdl}\right)}$$

- |D| is the length of the document D in words
- avgdl is the average document length in the text collection from which documents are drawn
- k₁ and b are free parameters, usually chosen, in absence of an advanced optimization, as k₁ ∈ [1.2,2.0] and b = 0.75.
- $IDF(q_i) = log \frac{N n(q_i) + 0.5}{n(q_i) + 0.5}$
 - N = total number of documents in the collection
 - $N(q_i)$ = documents containing q_i

Summary – Vector Space Ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Today's Agenda

- Need for Relevance Ranking
- TF and IDF
- Vector Space Model

Efficient Cosine Ranking

• Find the K docs in the collection "nearest" to the query \Rightarrow K largest query-doc cosines.

• Efficient ranking

- Computing a single cosine efficiently.
- Choosing the *K* largest cosine values efficiently.
 - Can we do this without computing all *N* cosines?
 - We don't need to totally order all docs in the collection
 - Let *J* = number of docs with nonzero cosines
 - We seek the K best of these J
 - Use heap for selecting top *K*
 - Exact topK is difficult, but approx-topK is feasible and acceptable

Generic Approach

- Find a set A of contenders, with K < |A| << N
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of *A* as <u>pruning</u> non-contenders

Index Elimination

- Basic algorithm only considers docs containing at least one query term
- Take this further
 - Only consider high-idf query terms
 - Only consider docs containing many query terms

Champion Lists

- Precompute for each dictionary term t, the r docs of highest weight in t's postings
 - Call this the <u>champion list</u> for t
 - (aka <u>fancy list</u> or <u>top docs</u> for t)
- Note that *r* has to be chosen at index time
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the *K* top-scoring docs from amongst these

Static Quality Scores

- We want top-ranking documents to be both *relevant* and *authoritative*
- *Relevance* is being modeled by cosine scores
- *Authority* is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - (Pagerank)
- Assign to each document a *query-independent* <u>quality score</u> in [0,1] to each document *d*
 - Denote this by g(d)

Net Score

- Consider a simple total score combining cosine relevance and authority
- net-score(q,d) = g(d) + cosine(q,d)
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two "signals" of user happiness

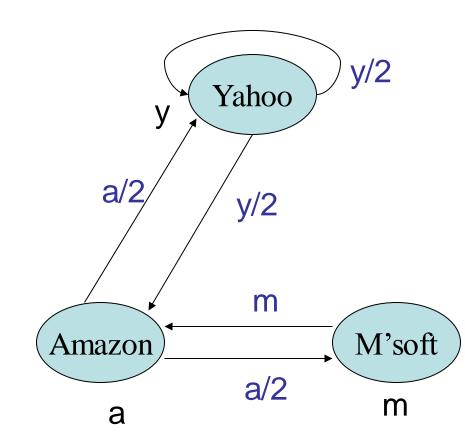
Manish Gupta

Slides borrowed (and modified) from http://infolab.stanford.edu/~ullman/mining/2009/index.html http://www.mpi-inf.mpg.de/departments/d5/teaching/ws11_12/irdm/slides/irdm-4-2-4.pptx

Ranking Web Pages

- Web pages are not equally "important"
 - www.joe-schmoe.com VS www.stanford.edu
- Inlinks as votes
 - <u>www.stanford.edu</u> has 23,400 inlinks
 - <u>www.joe-schmoe.com</u> has 1 inlink
- Are all inlinks equal?
 - Recursive question
 - Each link's vote is proportional to the importance of its source page
 - If page P with importance x has n outlinks, each link gets x/n votes
 - Page P's own importance is the sum of the votes on its inlinks

Simple "Flow" Model



$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness

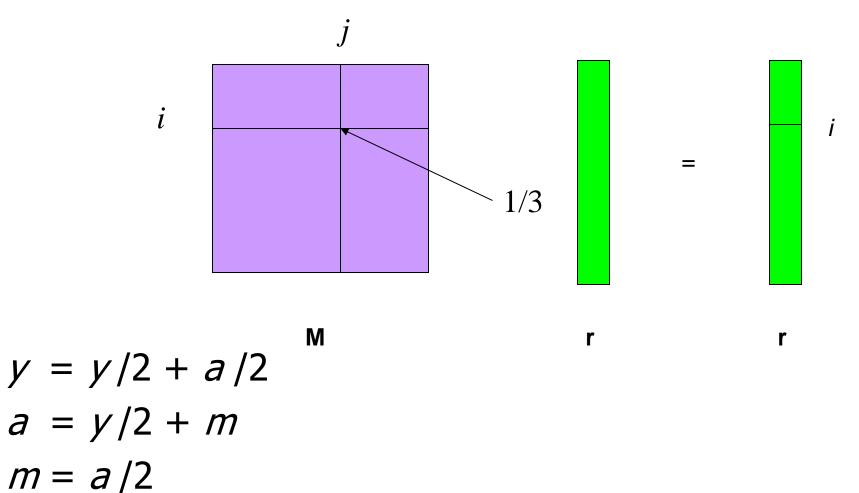
-y+a+m = 1

 Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix Formulation

- Matrix M has one row and one column for each web page
- Suppose page j has n outlinks
 - If j != i, then $M_{ij}=1/n$
 - Else $M_{ij}=0$
- **M** is a column stochastic matrix
 - Columns sum to 1
- Suppose **r** is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector
 - $-|\mathbf{r}| = 1$

Suppose page j links to 3 pages, including i



Eigenvector Formulation

• The flow equations can be written as

 $\mathbf{r} = \mathbf{M}\mathbf{r}$

- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

$$y = y/2 + a/2$$

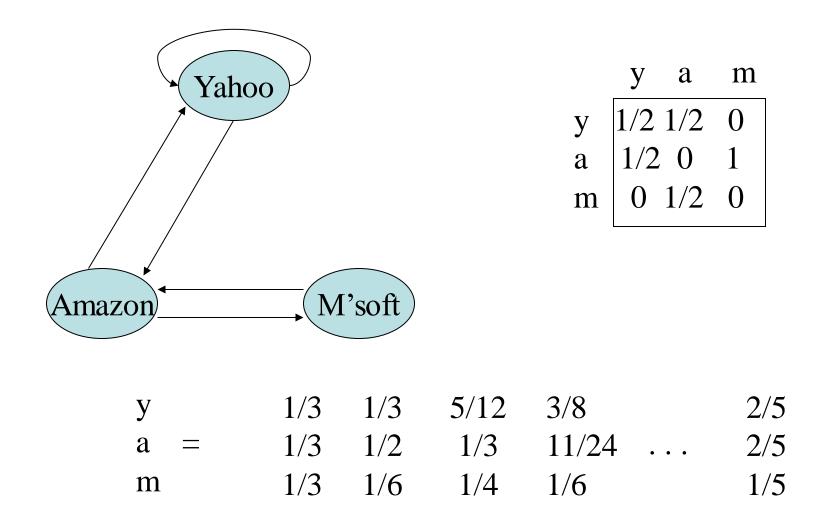
 $a = y/2 + m$
 $m = a/2$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^0 = [1/N, \dots, 1/N]^T$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \epsilon$
 - $|\boldsymbol{x}|_1$ = $\sum_{1 \leq i \leq N} |\boldsymbol{x}_i|$ is the L_1 norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example



Further Reading

- Chapters 6,7,8 of Manning-Raghavan-Schuetze book
 - <u>http://nlp.stanford.edu/IR-book/</u>
- S. E. Robertson and K. Spärck Jones. 1976. Relevance Weighting of Search Terms. *Journal of the American Society for Information Sciences* 27(3): 129–146.
- C. J. van Rijsbergen. 1979. *Information Retrieval.* 2nd ed. London: Butterworths, chapter 6. [Most details of math] http://www.dcs.gla.ac.uk/Keith/Preface.html
- N. Fuhr. 1992. Probabilistic Models in Information Retrieval. *The Computer Journal*, 35(3),243–255. [Easiest read, with BNs]
- F. Crestani, M. Lalmas, C. J. van Rijsbergen, and I. Campbell. 1998. Is This Document Relevant?
 ... Probably: A Survey of Probabilistic Models in Information Retrieval. ACM Computing Surveys 30(4): 528–552.
 - <u>http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani/</u>

Further Reading

- <u>A nice summary of link analysis algorithms from John Kleinberg</u>
 - http://dl.acm.org/citation.cfm?id=345982
- Chapter 5: "Link Analysis" from Mining of Massive Datasets
 - http://infolab.stanford.edu/~ullman/mmds.html
- Chapter 7 (Social Network Analysis) from Mining the Web
 - http://www.cse.iitb.ac.in/soumen/mining-the-web/
- J.M. Kleinberg: Authoritative Sources in a Hyperlinked Environment, JACM 46(5), 1999
- S Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search Engine, WWW 1998
- M. Najork, H. Zaragoza, M. Taylor: HITS on the Web: How does it Compare?, SIGIR 2007
- R. Lempel, S. Moran: SALSA: The Stochastic Approach for Link-Structure Analysis, ACM TOIS 19(2), 2001.
- G. Jeh, J. Widom: SimRank: a Measure of Structural-Context Similarity, KDD 2002
- Taher Haveliwala: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search, IEEE Trans. on Knowledge and Data Engineering, 2003.
- G. Jeh, J. Widom: Scaling personalized web search, WWW 2003.
- D. Fogaras, B. Racz, K. Csalogany, A. Benczur: Towards Scaling Fully Personalized PageRank: Algorithms, Lower Bounds, and Experiments, Internet Mathematics 2(3): 333-358, 2006.