
Manish Gupta

Relevance Ranking

Today’s Agenda

• Need for Relevance Ranking

• TF and IDF

• Vector Space Model

Today’s Agenda

• Need for Relevance Ranking

• TF and IDF

• Vector Space Model

Ranked Retrieval

• Thus far, our queries have all been Boolean.
– Documents either match or don’t.

• Good for expert users with precise understanding of their needs and
the collection.
– Also good for applications: Applications can easily consume 1000s of results.

• Not good for the majority of users.

– Most users are incapable of writing Boolean queries.

– Most users don’t want to wade through 1000s of results.
• This is particularly true of web search.

Ch. 6

Problem with Boolean search: Feast or Famine

• Boolean queries often result in either too few (=0) or too many
(1000s) results.

• Query 1: “standard user dlink 650” → 200,000 hits

• Query 2: “standard user dlink 650 no card found”: 0 hits

• It takes a lot of skill to come up with a query that produces a
manageable number of hits.
– AND gives too few; OR gives too many

Ch. 6

Feast or Famine: OK for Ranked Retrieval

• Rather than a set of documents satisfying a query expression, in
ranked retrieval, the system returns an ordering over the (top)
documents in the collection for a query

• When a system produces a ranked result set, large result sets are not
an issue

– Indeed, the size of the result set is not an issue

– We just show the top k (≈ 10) results

– We don’t overwhelm the user

– Premise: the ranking algorithm works. Is it true?

Ch. 6

Eye Tracking Study on Search Results

2006

http://www.mediative.com/eye-tracking-google-through-the-years/

Scoring as the Basis of Ranked Retrieval

• We wish to return in order the documents most likely to be useful to
the searcher

• How can we rank-order the documents in the collection with respect
to a query?

• Assign a score – say in [0, 1] – to each document

• This score measures how well document and query “match.”

Ch. 6

Query-Document Matching Scores

• We need a way of assigning a score to a query/document pair

• Let’s start with a one-term query

• If the query term does not occur in the document: score should be 0

• The more frequent the query term in the document, the higher the
score (should be)

• We will look at a number of alternatives for this.

• First take: Jaccard coefficient?

Ch. 6

Issues with Jaccard for Scoring

• It doesn’t consider term frequency (how many times a term occurs in
a document)

• Rare terms in a collection are more informative than frequent terms.
Jaccard doesn’t consider this information

• We need a more sophisticated way of normalizing for length

Ch. 6

Binary Term-Document Incidence Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector ∈ {0,1}
|V|

Sec. 6.2

Term-Document Count Matrices

• Consider the number of occurrences of a term in a document
– Each document is a count vector in ℕv: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Today’s Agenda

• Need for Relevance Ranking

• TF and IDF

• Vector Space Model

Term Frequency TF

• The term frequency tft,d of term t in document d is defined as the
number of times that t occurs in d.

• Relevance does not increase proportionally with term frequency.

• So use log frequency weighting

• The log frequency weight of term t in d is 𝑤𝑡𝑑 = 1+ log10 𝑡𝑓𝑡𝑑 if
𝑡𝑓𝑡𝑑 > 0; else it is 0.

• Score for a document-query pair: sum over terms t in both q and d

– 𝑠𝑐𝑜𝑟𝑒 = σ𝑡∈𝑞∩𝑑(1 + log10 𝑡𝑓𝑡𝑑)

Inverse Document Frequency IDF

• Frequent terms are less informative than rare terms

• 𝑑𝑓𝑡 is the document frequency of 𝑡: the number of documents that
contain 𝑡
– 𝑑𝑓𝑡 ≤ 𝑁

• 𝑖𝑑𝑓𝑡 = log10
𝑁

𝑑𝑓𝑡

• IDF has no effect on ranking one term queries
– IDF affects the ranking of documents for queries with at least two terms

– For the query capricious person, IDF weighting makes occurrences of capricious
count for much more in the final document ranking than occurrences of person.

Sec. 6.2.1

TF-IDF Weighting

• The tf-idf weight of a term is the product of its tf weight and its idf
weight.

• Score for a document given a query

• There are many variants
– How “tf” is computed (with/without logs)

– Whether the terms in the query are also weighted

– …

)df/(log)tf1log(w 10,, tdt N
dt

+=

Sec. 6.2.2



Score(q,d) = tf.idft,d
tqd



Binary → Count → Weight Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V|

Sec. 6.3

Ranking in Vector Space Model

• Represent both query and document as vectors in the |V|-
dimensional space

• Use cosine similarity as the similarity measure

– Incorporates length normalization automatically (longer vs shorter documents)

• qi is the tf-idf weight of term i in the query

• di is the tf-idf weight of term i in the document





==

==•=
•

=
V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











TF-IDF Weighting has many Variants

Columns headed ‘n’ are acronyms for weight schemes.

SMART Notation: denotes the combination in use in an

engine, with the notation ddd.qqq, using the

acronyms from the previous table

A very standard weighting scheme is: lnc.ltc

Sec. 6.4

Okapi BM25

• Given a query Q, containing keywords 𝑞1,… , 𝑞𝑛, the BM25 score of a document D is:

𝑠𝑐𝑜𝑟𝑒 𝐷, 𝑄 = ෍

𝑖=1

𝑛

𝐼𝐷𝐹 𝑞𝑖 .
𝑡𝑓𝑞𝑖,𝐷. (𝑘1 + 1)

𝑡𝑓𝑞𝑖,𝐷 + 𝑘1. 1 − 𝑏 + 𝑏.
𝐷

𝑎𝑣𝑔𝑑𝑙

• |D| is the length of the document D in words
• avgdl is the average document length in the text collection from which documents

are drawn
• 𝑘1 and b are free parameters, usually chosen, in absence of an advanced

optimization, as 𝑘1 ∈ [1.2,2.0] and b = 0.75.

• 𝐼𝐷𝐹 𝑞𝑖 = 𝑙𝑜𝑔
𝑁−𝑛 𝑞𝑖 +0.5

𝑛 𝑞𝑖 +0.5

– 𝑁 = total number of documents in the collection
– 𝑁(𝑞𝑖) = documents containing 𝑞𝑖

Summary – Vector Space Ranking

• Represent the query as a weighted tf-idf vector

• Represent each document as a weighted tf-idf vector

• Compute the cosine similarity score for the query vector and each
document vector

• Rank documents with respect to the query by score

• Return the top K (e.g., K = 10) to the user

Today’s Agenda

• Need for Relevance Ranking

• TF and IDF

• Vector Space Model

Efficient Cosine Ranking

• Find the K docs in the collection “nearest” to the query
 K largest query-doc cosines.

• Efficient ranking
– Computing a single cosine efficiently.

– Choosing the K largest cosine values efficiently.
• Can we do this without computing all N cosines?

• We don’t need to totally order all docs in the collection

• Let J = number of docs with nonzero cosines
– We seek the K best of these J

• Use heap for selecting top 𝐾

• Exact topK is difficult, but approx-topK is feasible and acceptable

Generic Approach

• Find a set A of contenders, with K < |A| << N

– A does not necessarily contain the top K, but has many docs
from among the top K

– Return the top K docs in A

• Think of A as pruning non-contenders

Index Elimination

• Basic algorithm only considers docs containing at least one query term

• Take this further
– Only consider high-idf query terms

– Only consider docs containing many query terms

Champion Lists

• Precompute for each dictionary term t, the r docs of highest weight in
t’s postings

– Call this the champion list for t

– (aka fancy list or top docs for t)

• Note that r has to be chosen at index time

• At query time, only compute scores for docs in the champion list of
some query term
– Pick the K top-scoring docs from amongst these

Static Quality Scores

• We want top-ranking documents to be both relevant and authoritative

• Relevance is being modeled by cosine scores

• Authority is typically a query-independent property of a document

• Examples of authority signals

– Wikipedia among websites

– Articles in certain newspapers

– A paper with many citations

– Many diggs, Y!buzzes or del.icio.us marks

– (Pagerank)

• Assign to each document a query-independent quality score in [0,1] to each
document d

– Denote this by g(d)

Net Score

• Consider a simple total score combining cosine relevance and
authority

• net-score(q,d) = g(d) + cosine(q,d)

– Can use some other linear combination than an equal weighting

– Indeed, any function of the two “signals” of user happiness

29

PageRank

Manish Gupta

Slides borrowed (and modified) from

http://infolab.stanford.edu/~ullman/mining/2009/index.html
http://www.mpi-inf.mpg.de/departments/d5/teaching/ws11_12/irdm/slides/irdm-4-2-4.pptx

http://infolab.stanford.edu/~ullman/mining/2009/index.html
http://www.mpi-inf.mpg.de/departments/d5/teaching/ws11_12/irdm/slides/irdm-4-2-4.pptx

30

Ranking Web Pages

• Web pages are not equally “important”
– www.joe-schmoe.com vs www.stanford.edu

• Inlinks as votes
– www.stanford.edu has 23,400 inlinks

– www.joe-schmoe.com has 1 inlink

• Are all inlinks equal?
– Recursive question

– Each link’s vote is proportional to the importance of its source
page

– If page P with importance x has n outlinks, each link gets x/n
votes

– Page P’s own importance is the sum of the votes on its inlinks

http://www.stanford.edu/
http://www.joe-schmoe.com/

31

Simple “Flow” Model

Yahoo

M’softAmazon

y

a m

y/2

y/2

a/2

a/2

m

y = y /2 + a /2

a = y /2 + m

m = a /2

32

Solving the Flow Equations

• 3 equations, 3 unknowns, no constants
–No unique solution

–All solutions equivalent modulo scale factor

• Additional constraint forces uniqueness
–y+a+m = 1

–y = 2/5, a = 2/5, m = 1/5

• Gaussian elimination method works for
small examples, but we need a better
method for large graphs

33

Matrix Formulation

• Matrix M has one row and one column for each web
page

• Suppose page j has n outlinks

– If j != i, then Mij=1/n

– Else Mij=0

• M is a column stochastic matrix

– Columns sum to 1

• Suppose r is a vector with one entry per web page

– ri is the importance score of page i

– Call it the rank vector

– |r| = 1

34

Example

Suppose page j links to 3 pages, including i

i

j

M r r

=

i

1/3

y = y /2 + a /2

a = y /2 + m

m = a /2

35

Eigenvector Formulation

• The flow equations can be written as

r = Mr

• So the rank vector is an eigenvector of
the stochastic web matrix

– In fact, its first or principal eigenvector, with

corresponding eigenvalue 1

y = y /2 + a /2

a = y /2 + m

m = a /2

y 1/2 1/2 0 y

a = 1/2 0 1 a

m 0 1/2 0 m

36

Power Iteration Method

• Simple iterative scheme (aka relaxation)

• Suppose there are N web pages

• Initialize: r0 = [1/N,….,1/N]T

• Iterate: rk+1 = Mrk

• Stop when |rk+1 - rk|1 < 

– |x|1 = 1≤i≤N|xi| is the L1 norm

–Can use any other vector norm e.g.,

Euclidean

37

Power Iteration Example

Yahoo

M’softAmazon

y 1/2 1/2 0

a 1/2 0 1

m 0 1/2 0

y a m

y

a =

m

1/3

1/3

1/3

1/3

1/2

1/6

5/12

1/3

1/4

3/8

11/24

1/6

2/5

2/5

1/5

. . .

Further Reading

• Chapters 6,7,8 of Manning-Raghavan-Schuetze book

– http://nlp.stanford.edu/IR-book/

• S. E. Robertson and K. Spärck Jones. 1976. Relevance Weighting of Search Terms. Journal of
the American Society for Information Sciences 27(3): 129–146.

• C. J. van Rijsbergen. 1979. Information Retrieval. 2nd ed. London: Butterworths, chapter 6.
[Most details of math] http://www.dcs.gla.ac.uk/Keith/Preface.html

• N. Fuhr. 1992. Probabilistic Models in Information Retrieval. The Computer Journal,
35(3),243–255. [Easiest read, with BNs]

• F. Crestani, M. Lalmas, C. J. van Rijsbergen, and I. Campbell. 1998. Is This Document Relevant?

... Probably: A Survey of Probabilistic Models in Information Retrieval. ACM Computing

Surveys 30(4): 528–552.

– http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani/

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://www.acm.org/pubs/citations/journals/surveys/1998-30-4/p528-crestani/

41

Further Reading
• A nice summary of link analysis algorithms from John Kleinberg

– http://dl.acm.org/citation.cfm?id=345982

• Chapter 5: "Link Analysis" from Mining of Massive Datasets
– http://infolab.stanford.edu/~ullman/mmds.html

• Chapter 7 (Social Network Analysis) from Mining the Web
– http://www.cse.iitb.ac.in/soumen/mining-the-web/

• J.M. Kleinberg: Authoritative Sources in a Hyperlinked Environment, JACM
46(5), 1999

• S Brin, L. Page: The Anatomy of a Large-Scale Hypertextual Web Search
Engine, WWW 1998

• M. Najork, H. Zaragoza, M. Taylor: HITS on the Web: How does it Compare?,
SIGIR 2007

• R. Lempel, S. Moran: SALSA: The Stochastic Approach for Link-Structure
Analysis, ACM TOIS 19(2), 2001.

• G. Jeh, J. Widom: SimRank: a Measure of Structural-Context Similarity, KDD
2002

• Taher Haveliwala: Topic-Sensitive PageRank: A Context-Sensitive Ranking
Algorithm for Web Search, IEEE Trans. on Knowledge and Data Engineering,
2003.

• G. Jeh, J. Widom: Scaling personalized web search, WWW 2003.
• D. Fogaras, B. Racz, K. Csalogany, A. Benczur: Towards Scaling Fully

Personalized PageRank: Algorithms, Lower Bounds, and Experiments, Internet
Mathematics 2(3): 333-358, 2006.

http://dl.acm.org/citation.cfm?id=345982
http://infolab.stanford.edu/~ullman/mmds.html
http://www.cse.iitb.ac.in/soumen/mining-the-web/

