
Probabilistic IR

Why probabilities in IR?

User

Information Need

Documents
Document

Representation

Query

Representation

How to match?

In traditional IR systems, matching between each document and
query is attempted in a semantically imprecise space of index terms.

Probabilities provide a principled foundation for uncertain reasoning.
Can we use probabilities to quantify our uncertainties?

Uncertain guess of
whether document has
relevant content

Understanding
of user need is
uncertain

vector space vs. probabilistic

• Vector space model: rank documents according to
similarity to query.

• The notion of similarity does not translate directly into an
assessment of “is the document a good document to give
to the user or not?”

• The most similar document can be highly relevant or
completely non-relevant.

• Probability theory is arguably a cleaner formalization of
what we really want an IR system to do: give relevant
documents to the user.

The document ranking problem

• We have a collection of documents

• User issues a query

• A list of documents needs to be returned

• Ranking method is the core of an IR system:
• In what order do we present documents to the user?

• We want the “best” document to be first, second best second, etc….

• Idea: Rank by probability of relevance of the document w.r.t.
information need
• P(R=1|documenti, query)

• For events A and B:

• Bayes’ Rule

• Odds:

Prior

 =

==

===

AAX
XpXBp

ApABp

Bp

ApABp
BAp

ApABpBpBApBApBAp

,
)()|(

)()|(

)(

)()|(
)|(

)()|()()|()(),(

Recall a few probability basics

O(A) =
p(A)

p(A)
=

p(A)

1- p(A)

Posterior

“If a reference retrieval system’s response to each request is a
ranking of the documents in the collection in order of decreasing
probability of relevance to the user who submitted the request,
where the probabilities are estimated as accurately as possible on
the basis of whatever data have been made available to the system
for this purpose, the overall effectiveness of the system to its user
will be the best that is obtainable on the basis of those data.”

• [1960s/1970s] S. Robertson, W.S. Cooper, M.E. Maron;
van Rijsbergen (1979:113); Manning & Schütze (1999:538)

The Probability Ranking Principle

Probability Ranking Principle

Let x represent a document in the collection.

Let R represent relevance of a document w.r.t. given (fixed)

query and let R=1 represent relevant and R=0 not relevant.

p(R =1| x) =
p(x | R =1)p(R =1)

p(x)

p(R = 0 | x) =
p(x | R = 0)p(R = 0)

p(x)

p(x|R=1), p(x|R=0) - probability that if a

relevant (not relevant) document is

retrieved, it is x.

Need to find p(R=1|x) - probability that a document x is relevant.

p(R=1),p(R=0) - prior probability

of retrieving a relevant or non-relevant

document

p(R = 0 | x)+ p(R =1| x) =1

Probability Ranking Principle (PRP)

• Simple case: no selection costs or other utility concerns that would
differentially weight errors

• PRP in action: Rank all documents by p(R=1|x)

Probability Ranking Principle

• More complex case: retrieval costs.
• Let d be a document

• C – cost of not retrieving a relevant document

• C’ – cost of retrieving a non-relevant document

• Probability Ranking Principle: if

for all d’ not yet retrieved, then d is the next document
to be retrieved

• We won’t further consider cost/utility from now on

¢C × p(R = 0 | d)-C × p(R =1| d) £ ¢C × p(R = 0 | ¢d)-C × p(R =1| ¢d)

Probability Ranking Principle

• How do we compute all those probabilities?
• Do not know exact probabilities, have to use estimates

• Binary Independence Model (BIM) – which we discuss
next – is the simplest model

• Questionable assumptions
• “Relevance” of each document is independent of

relevance of other documents.
• Really, it’s bad to keep on returning duplicates

• Boolean model of relevance

• That one has a single step information need
• Seeing a range of results might let user refine query

Binary Independence Model

• Traditionally used in conjunction with PRP

• “Binary” = Boolean: documents are represented as binary incidence vectors of terms:

•

• 𝑥𝑖 = 1 iff term i is present in document x.

• “Independence”: terms occur in documents independently

• Different documents can be modeled as the same vector

),,(1 nxxx 

=

Binary Independence Model

• Queries: binary term incidence vectors

• Given query q,
• for each document d need to compute p(R|q,d).

• replace with computing p(R|q,x) where x is binary term incidence vector
representing d.

• Interested only in ranking

• Will use odds and Bayes’ Rule:

O(R | q, x) =
p(R =1| q, x)

p(R = 0 | q, x)
=

p(R =1| q)p(x | R =1, q)

p(x | q)

p(R = 0 | q)p(x | R = 0, q)

p(x | q)

Binary Independence Model

• Using Independence Assumption:

O(R | q, x) = O(R | q) ×
p(xi | R =1, q)

p(xi | R = 0,q)
i=1

n

Õ

p(x | R =1,q)

p(x | R = 0,q)
=

p(xi | R =1,q)

p(xi | R = 0,q)
i=1

n

Õ

O(R | q, x) =
p(R =1| q, x)

p(R = 0 | q, x)
=

p(R =1| q)

p(R = 0 | q)
×

p(x | R =1,q)

p(x | R = 0,q)

Constant for a

given query
Needs estimation

Binary Independence Model

• Since xi is either 0 or 1:

O(R | q, x) = O(R | q) ×
p(xi =1| R =1, q)

p(xi =1| R = 0,q)
xi=1

Õ ×
p(xi = 0 | R =1,q)

p(xi = 0 | R = 0, q)
xi=0

Õ

• Let pi = p(xi =1| R =1,q); ri = p(xi =1| R = 0,q);

• Assume, for all terms not occurring in the query (qi=0) ii rp =

O(R | q, x) = O(R | q) ×
p(xi | R =1, q)

p(xi | R = 0,q)
i=1

n

Õ

O(R | q, x) = O(R | q) ×
pi

rixi=1
qi=1

Õ ×
(1- pi)

(1- ri)xi=0
qi=1

Õ

A term not occurring in the query is equally likely to occur in relevant and non-relevant documents.

document relevant (R=1) not relevant (R=0)

term present xi = 1 pi ri

term absent xi = 0 (1 – pi) (1 – ri)

All matching terms
Non-matching

query terms

Binary Independence Model

All matching terms
All query terms

O(R | q, x) = O(R | q) ×
pi

rixi=1
qi=1

Õ ×
1- ri

1- pi

×
1- pi

1- ri

æ

è
ç

ö

ø
÷

xi=1
qi=1

Õ
1- pi

1- rixi=0
qi=1

Õ

O(R | q, x) = O(R | q) ×
pi (1- ri)

ri(1- pi)xi=qi=1

Õ ×
1- pi

1- riqi=1

Õ

O(R | q, x) = O(R | q) ×
pi

rixi=qi=1

Õ ×
1- pi

1- rixi=0
qi=1

Õ

Binary Independence Model

Constant for

each query

Only quantity to be estimated

for rankings


=== −

−


−

−
=

11 1

1

)1(

)1(
)|(),|(

iii q i

i

qx ii

ii

r

p

pr

rp
qROxqRO



Retrieval Status Value:


==== −

−
=

−

−
=

11)1(

)1(
log

)1(

)1(
log

iiii qx ii

ii

qx ii

ii

pr

rp

pr

rp
RSV

Binary Independence Model

All boils down to computing RSV.


==== −

−
=

−

−
=

11)1(

)1(
log

)1(

)1(
log

iiii qx ii

ii

qx ii

ii

pr

rp

pr

rp
RSV


==

=
1

;
ii qx

icRSV
)1(

)1(
log

ii

ii
i

pr

rp
c

−

−
=

So, how do we compute ci’s from our data ?

The ci are log odds ratios
They function as the term weights in this model

bim retrieval status value (rsv)
Probabilist ic Approach to IR Binary independence model Okapi BM25

BIM retrieval status value (2)

Equivalent: rank documents using the log odds ratios for the terms

in the query ct :

ct = log
pt (1 − ut)

ut (1 − pt)
= log

pt

(1 − pt)
− log

ut

1− ut

The odds ratio is the rat io of two odds: (i) the odds of the

term appearing if the document is relevant (pt / (1 − pt)), and

(ii) the odds of the term appearing if the document is

nonrelevant (ut / (1 − ut))

ct = 0: term has equal odds of appearing in relevant and

nonrelevant docs

ct positive: higher odds to appear in relevant documents

ct negative: higher odds to appear in nonrelevant

documents

Schütze: Probabilist ic Informat ion Retrieval 22 / 36

𝑟𝑡

𝑟𝑡

𝑟𝑡

𝑟𝑡

𝑟𝑡𝑟𝑡

avoiding zeros

• If any of the counts is a zero, then the term weight is not well-
defined.

• Maximum likelihood estimates do not work for rare events.

• To avoid zeros: add 0.5 to each count or use a different type of
smoothing

Binary Independence Model

• Estimating RSV coefficients in theory

• For each term i look at this table of document counts:

Documents

Relevant Non-Relevant Total

xi=1 s n-s n

xi=0 S-s N-n-S+s N-n

Total S N-S N

S

s
pi )(

)(

SN

sn
ri

−

−


)()(

)(
log),,,(

sSnNsn

sSs
sSnNKci

+−−−

−
=

• Estimates:

pi = p(xi =1| R =1,q); ri = p(xi =1| R = 0,q);

Estimation – key challenge

• If non-relevant documents are approximated by the
whole collection, then ri (prob. of occurrence in
non-relevant documents for query) is n/N and

log
1- ri

ri

= log
N - n - S + s

n - s
» log

N - n

n
» log

N

n
= IDF!

Estimation – key challenge

• pi (probability of occurrence in relevant documents)
cannot be approximated as easily

• pi can be estimated in various ways:
• Use the frequency of term occurrence in known relevant

documents if we know some
• Relevance weighting can be used in a feedback loop

• constant (Croft and Harper combination match) – then
just get idf weighting of terms (with pi=0.5)

• proportional to prob. of occurrence in collection

• Estimate 𝑝𝑖 =
1

3
+

2

3

𝑑𝑓𝑖

𝑁

• Pseudo-relevance feedback

RSV = log
N

nixi=qi=1

å

Probabilistic Relevance Feedback

1. Guess a preliminary probabilistic description of R=1 documents and
use it to retrieve a first set of documents

2. Interact with the user to refine the description: learn some definite
members with R=1 and R=0

3. Reestimate pi and ri on the basis of these
• Or can combine new information with original guess (use Bayesian prior):

4. Repeat, thus generating a succession of approximations to relevant
documents





+

+
=

||

||)1(
)2(

V

pV
p ii

i

κ is
prior

weight

25

Iteratively estimating pi and ri

(= Pseudo-relevance feedback)
1. Assume that pi is constant over all xi in query and ri as before

• pi = 0.5 (even odds) for any given doc

2. Determine guess of relevant document set:
• V is fixed size set of highest ranked documents on this model

3. We need to improve our guesses for pi and ri, so
• Use distribution of xi in docs in V. Let Vi be set of documents containing xi

• pi = |Vi| / |V|

• Assume if not retrieved then not relevant
• ri = (ni – |Vi|) / (N – |V|)

4. Go to 2. until converges then return ranking

Thanks

