Text Indexing

Manish Gupta

The Classic Search Model

User task

Info need

Query

iy

Search

engine \
Query\Aﬁ / Results = :
) Collection
refinement \

Query on Unstructured Data

* Which plays of Shakespeare contain the words Brutus AND Caesar
but NOT Calpurnia?

* One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia?

 Why is that not the answer?
— Slow (for large corpora)
— NOT Calpurniais non-trivial
— Other operations (e.g., find the word Romans near countrymen) not feasible
— Ranked retrieval (best documents to return)

Term-Document Incidence Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0
Brutus
Caesar

Calpurnia

Cleopatra

R O O +— O O

mercy

=
o O O P kP
R/ O O O O
P P O O kB
o b O O B O

worser 1

1 if play contains
word, O otherwise

Incidence Vectors

e So we have a 0/1 vector for each term.

e To answer query: take the vectors for Brutus, Caesar and Calpurnia
(complemented) = bitwise AND.
— 110100 AND 110111 AND 101111 =100100

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Bigger Collections

e Consider N =1 million documents, each with about 1000 words.

e Avg 6 bytes/word including spaces/punctuation
— 6GB of data in the documents.

e Say thereare M =500K distinct terms among these.

Can’t Build the Matrix

e 500K x 1M matrix has half-a-trillion 0’s and 1’s.

e But it has no more than one billion 1’s.
D
— matrix is extremely sparse. <= Whys

e What’s a better representation?

— We only record the 1 positions.

Inverted Index

e For eachtermt, we must store a list of all documents that contain t.
— ldentify each doc by a doclID, a document serial number

e Can we used fixed-size arrays for this?

Brutus | || 1121 4 11] 31] 451173174
Caesar | | 11 2] 4] 5]6] 16] 57132
Calpurnia 2 |31 | 54/101

What happens if the word
Caesar Is added to document
147

Inverted Index

e We need variable-size postings lists
— On disk, a continuous run of postings is normal and best

— In memory, can use linked lists or variable length arrays

Brutus

Caesar

Calpurnia

Dictionary

Sorted by docID

Posting

/

1 | 2 11| 31| 45]173]174
1 2 56 | 16/ 57]132
2 |31 54/101

Postings

\/

Inverted Index Construction

Documents to
be indexed

(=

[Tokenizer}

Friends, Romans, countrymen.

Token stream @ Friends Romans Countrymen
[Linguistic modules }
Modified tokens @ friend roman countryman
Indexer | | friend ﬂDI:> 214 —
Inverted index @ roman n—> |12
countryman |]D|:> 1316

Initial Stages of Text Processing

Tokenization

— Cut character sequence into word tokens
e Deal with “John’s”, a state-of-the-art solution

Normalization

— Map text and query term to same form
* You want U.S.A. and USA to match

Stemming

— We may wish different forms of a root to match

* authorize, authorization

Stop words
— We may omit very common words (or not)

* the, a, to, of

Indexer Steps: Token Sequence

Term doclD
I
. e] did
e Sequence of (Modified token, Document ID) pairs. enac
Laesar
LGS
!(illed
1he
capitol
brutus
killed
me

Doc 1 Doc 2 50

let
—]

be

with

caesar

| did enact Julius So let it be with the

noble

. brut
Caesar | was killed Caesar. The noble hath

I"the Capitol; Brutus hath told you toid

you

Brutus killed me. Caesar was ambitious caesar

was
ambitious

PR N MNP 2 2 2 aa

Indexer Steps: Sort

e Sort by terms
— And then docID

4

Core indexing step

Term

|

did
enact
julius
caesar
|

was
killed
i

the
capitol
brutus
killed
me

SO

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

doclD

RMMNMMNMNDMNMMNNMNRNNMNODRNODMNOODRMNMMNDNN 22 2 2 s oo aa aaaa

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

julius
killed
killed
let
me
noble
SO
the
the
told
you
was
was
with

doclD

MNRN = MPNMNMN 2PN 2PN = A APy = o a BN = N = NN

Indexer Steps: Dictionary & Postings

term doc. freq. ostings lists

<

* Multiple term entriesina . D b (1] —
single document are oo ; be [1 ~
d brutus 1 brutus 2‘ — —>
mergea. S;l:)ti?; f capitol | 1 | —
* Split into Dictionary and T ! el |- - ﬁ
Postings i i enact [1] - L
enact 1 hath | 1 N i
* Doc. frequency hath ! ey [T Y
information is added. : : . i| DB
it 2 ! — 4]
julius 1 julius | 1 — i
lec] illed | 1 -~ 1
let 2 Iet 1 —
:loeble ; me | 1 - 1
SO 2 noble 1| — i
the 2 o1 - [2]
told 2 the | 2 — |1]—]2]
was : told | 1 - [2]
v : -~ 2]
ﬁ with 2 was | 2 — i_’
Why frequency? with | 1 | — [2

Will discuss later.

Where do we pay in Storage?

term doc. freq.

ambitious ‘ 1 ‘

be | 1

brutus
capitol | 1

caesar | 2 ‘

did | 1|

enact | 1 ‘

Terms
and
counts

julius | 1

killed | 1

Iet‘l‘

me 1‘

noble | 1 ‘

so | 1
the | 2

told | 1 ‘

you | 1

NENNENNEANERNERRNERERRERENN

:>lllllllllllllllllllllll

|

]

|

|

|

U
Q.
S
—
@
b
w

]

fi

postings lists

Lists of
doclIDs

Query Processing: AND

e Consider processing the query:
Brutus AND Caesar
— Locate Brutus in the Dictionary;

e Retrieve its postings.

— Locate Caesar in the Dictionary;

e Retrieve its postings.

— “Merge” the two postings (intersect the document sets):

« 2148163264 —{128| Brutus
1123581321+ 34| Caesar

\ 4

\ 4

\ 4
A 4
\ 4

The Merge

e Walk through the two postings simultaneously, in time linear in the
total number of postings entries

«

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclID.

2481632 | +64 128 | Brutus
115215314581+ 13 21|+ 34 | Caesar

Boolean Queries: Exact Match

 The Boolean retrieval model is being able to ask a query that is a
Boolean expression:

— Boolean Queries are queries using AND, OR and NOT to join query terms
* Views each document as a set of words

* |s precise: document matches condition or not.

— Perhaps the simplest model to build an IR system on
* Primary commercial retrieval tool for 3 decades.

 Many search systems you still use are Boolean:
— Email, library catalog, Mac OS X Spotlight

Query Optimization

e What is the best order for query processing?
e Consider a query thatis an AND of n terms.
e For each of the n terms, get its postings, then AND them together.

Brutus m——> | 2[4] 8]16] 32] 64128
Caesar m——> | 1] 2] 3/ 51816/ 21 34

Calpurnia |]D|:> 13116

Query: Brutus AND Calpurnia AND Caesar

Query Optimization Example

e Processin order of increasing freq:
— start with smallest set, then keep cutting further.

4

This is why we kept
document freq. in dictionary

Brutus m——> | 214] 8] 16| 32| 64/128

Caesar HD:>] 21 3| 5| 8] 16| 21

Calpurnia |]D|:> 13116

Execute the query as (Calpurnia AND Brutus) AND Caesar.

More General Optimization

e e.g., (madding OR crowd) AND (ignoble OR strife)
e Getdoc. freq.’s for all terms.

e Estimate the size of each OR by the sum of its doc.
freq.’s (conservative).

e Process in increasing order of OR sizes.

Phrase Queries

« We want to be able to answer queries such as “stanford university” —
as a phrase

 Thus the sentence “l went to university at Stanford” is not a match.

— The concept of phrase queries has proven easily understood by users; one of the
few “advanced search” ideas that works

— Many more queries are implicit phrase queries
* For this, it no longer suffices to store only
<term : docs> entries

A First Attempt: Bi-word Indexes

* Index every consecutive pair of terms in the text as a phrase

* For example the text “Friends, Romans, Countrymen” would generate
the biwords
— friends romans
— romans countrymen

* Each of these bi-words is now a dictionary term
 Two-word phrase query-processing is now immediate.

Longer Phrase Queries

* Longer phrases can be processed by breaking them down

e stanford university palo alto can be broken into the Boolean query on
biwords:

stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs matching the above
Boolean query do contain the phrase.

=

Can have false positives!

Issues for Bi-word Indexes

e False positives, as noted before

e [ndex blowup due to bigger dictionary
— Infeasible for more than bi-words, big even for them

e Bi-word indexes are not the standard solution (for all bi-words) but
can be part of a compound strategy

Solution 2: Positional Indexes

* |n the postings, store, for each term the position(s) in which tokens of
it appear

<term, number of docs containing term;
docl: positionl, position2 ... ;

doc2: positionl, position2 ... ;

etc.>

Positional Index Example

e For phrase queries, we use a merge algorithm recursively at the
document level

e But we now need to deal with more than just equality

<be: 993427:

107,18, 33, 72, 86, 231; Which of docs 1,2,4.5
2: 3, 149, < could contain “io’bé
4:17,191, 291, 430,434; ornoticioesy

5:363,367,...>

Processing a Phrase Query

 Extractinverted index entries for each distinct term: to, be, or, not.

* Merge their doc:position lists to enumerate all positions with “to be or
not to be”.

— to:

e 2:1,17,74,222,551:4:8,16,190,429,433: 7:13,23,191; ...
— be:

e 1:17,19:4:17,191,291,430,434;5:14,19,101; ...

e Same general method for proximity searches

Proximity Queries

* LIMIT! /3 STATUTE /3 FEDERAL /2 TORT

— Again, here, /k means “within k words of”.

* C(Clearly, positional indexes can be used for such queries; bi-word
indexes cannot.

Further Reading

e Chapters 1,2,5 of Manning-Raghavan-Schuetze book
— http://nlp.stanford.edu/IR-book/

e Chapter 3 (Web Search and Information Retrieval) from Mining the Web
— http://www.cse.iitb.ac.in/soumen/mining-the-web/

e Original publication on SPIMI: Heinz and Zobel (2003)

e F.Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.
— Variable byte codes
e V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151-166.
— Word aligned codes
e As We May Think -- Vannevar Bush
— http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

http://nlp.stanford.edu/IR-book/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

