
Text Indexing

Manish Gupta

The Classic Search Model

Collection

User task

Info need

Query

Results

Search

engine

Query

refinement

Query on Unstructured Data

• Which plays of Shakespeare contain the words Brutus AND Caesar
but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia?

• Why is that not the answer?
– Slow (for large corpora)

– NOT Calpurnia is non-trivial

– Other operations (e.g., find the word Romans near countrymen) not feasible

– Ranked retrieval (best documents to return)

Sec. 1.1

Term-Document Incidence Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains

word, 0 otherwise
Brutus AND Caesar BUT NOT

Calpurnia

Sec. 1.1

Incidence Vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus, Caesar and Calpurnia
(complemented) ➔ bitwise AND.
– 110100 AND 110111 AND 101111 = 100100

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Bigger Collections

• Consider N = 1 million documents, each with about 1000 words.

• Avg 6 bytes/word including spaces/punctuation
– 6GB of data in the documents.

• Say there are M = 500K distinct terms among these.

Sec. 1.1

Can’t Build the Matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.
– matrix is extremely sparse.

• What’s a better representation?
– We only record the 1 positions.

Why?

Sec. 1.1

Inverted Index

• For each term t, we must store a list of all documents that contain t.
– Identify each doc by a docID, a document serial number

• Can we used fixed-size arrays for this?

What happens if the word

Caesar is added to document

14?

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Inverted Index

• We need variable-size postings lists
– On disk, a continuous run of postings is normal and best

– In memory, can use linked lists or variable length arrays

Dictionary Postings

Sorted by docID

Posting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Tokenizer

Token stream Friends Romans Countrymen

Inverted Index Construction

Linguistic modules

Modified tokens
friend roman countryman

Documents to

be indexed

Friends, Romans, countrymen.

Sec. 1.2

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Initial Stages of Text Processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization

– Map text and query term to same form
• You want U.S.A. and USA to match

• Stemming

– We may wish different forms of a root to match
• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer Steps: Token Sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius

Caesar I was killed

i’ the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Sec. 1.2

Indexer Steps: Sort

• Sort by terms
– And then docID

Core indexing step

Sec. 1.2

Indexer Steps: Dictionary & Postings
• Multiple term entries in a

single document are
merged.

• Split into Dictionary and
Postings

• Doc. frequency
information is added.

Why frequency?
Will discuss later.

Sec. 1.2

Where do we pay in Storage?

Pointers

Terms
and

counts

IR system

implementation

• How do we

index

efficiently?

• How much

storage do we

need?

Sec. 1.2

Lists of
docIDs

Query Processing: AND

• Consider processing the query:
Brutus AND Caesar

– Locate Brutus in the Dictionary;
• Retrieve its postings.

– Locate Caesar in the Dictionary;
• Retrieve its postings.

– “Merge” the two postings (intersect the document sets):

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The Merge

• Walk through the two postings simultaneously, in time linear in the
total number of postings entries

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Sec. 1.3

Boolean Queries: Exact Match

• The Boolean retrieval model is being able to ask a query that is a
Boolean expression:

– Boolean Queries are queries using AND, OR and NOT to join query terms
• Views each document as a set of words

• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.

• Many search systems you still use are Boolean:
– Email, library catalog, Mac OS X Spotlight

Sec. 1.3

Query Optimization

• What is the best order for query processing?

• Consider a query that is an AND of n terms.

• For each of the n terms, get its postings, then AND them together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar

Sec. 1.3

Query Optimization Example

• Process in order of increasing freq:
– start with smallest set, then keep cutting further.

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

More General Optimization

• e.g., (madding OR crowd) AND (ignoble OR strife)

• Get doc. freq.’s for all terms.

• Estimate the size of each OR by the sum of its doc.
freq.’s (conservative).

• Process in increasing order of OR sizes.

Sec. 1.3

Phrase Queries

• We want to be able to answer queries such as “stanford university” –
as a phrase

• Thus the sentence “I went to university at Stanford” is not a match.

– The concept of phrase queries has proven easily understood by users; one of the
few “advanced search” ideas that works

– Many more queries are implicit phrase queries

• For this, it no longer suffices to store only

<term : docs> entries

Sec. 2.4

A First Attempt: Bi-word Indexes

• Index every consecutive pair of terms in the text as a phrase

• For example the text “Friends, Romans, Countrymen” would generate
the biwords

– friends romans

– romans countrymen

• Each of these bi-words is now a dictionary term

• Two-word phrase query-processing is now immediate.

Sec. 2.4.1

Longer Phrase Queries

• Longer phrases can be processed by breaking them down

• stanford university palo alto can be broken into the Boolean query on
biwords:

stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs matching the above
Boolean query do contain the phrase.

Can have false positives!

Sec. 2.4.1

Issues for Bi-word Indexes

• False positives, as noted before

• Index blowup due to bigger dictionary
– Infeasible for more than bi-words, big even for them

• Bi-word indexes are not the standard solution (for all bi-words) but
can be part of a compound strategy

Sec. 2.4.1

Solution 2: Positional Indexes

• In the postings, store, for each term the position(s) in which tokens of
it appear

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Sec. 2.4.2

Positional Index Example

• For phrase queries, we use a merge algorithm recursively at the
document level

• But we now need to deal with more than just equality
<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Sec. 2.4.2

Processing a Phrase Query

• Extract inverted index entries for each distinct term: to, be, or, not.

• Merge their doc:position lists to enumerate all positions with “to be or
not to be”.

– to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Sec. 2.4.2

Proximity Queries

• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
– Again, here, /k means “within k words of”.

• Clearly, positional indexes can be used for such queries; bi-word
indexes cannot.

Sec. 2.4.2

Further Reading

• Chapters 1,2,5 of Manning-Raghavan-Schuetze book
– http://nlp.stanford.edu/IR-book/

• Chapter 3 (Web Search and Information Retrieval) from Mining the Web
– http://www.cse.iitb.ac.in/soumen/mining-the-web/

• Original publication on SPIMI: Heinz and Zobel (2003)

• F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.

– Variable byte codes

• V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151–166.

– Word aligned codes

• As We May Think -- Vannevar Bush
– http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

http://nlp.stanford.edu/IR-book/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

