Index Compression



Why compression for inverted indexes?

= Dictionary
= Make it small enough to keep in main memory

= Make it so small that you can keep some postings lists in
main memory too

= Postings file(s)
= Reduce disk space needed
= Decrease time needed to read postings lists from disk

= Large search engines keep a significant part of the postings
IN memory.

Compression lets you keep more in memory
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DICTIONARY COMPRESSION



Why compress the dictionary?

e Search begins with the dictionary

e We want to keep it in memory

e Memory footprint competition with other applications
e Embedded/mobile devices may have very little memory

e Even if the dictionary isn’tin memory, we want it to be small for a fast
search startup time

e So, compressing the dictionary is important



Dictionary storage - first cut

e Array of fixed-width entries
— ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms |Freq. Postings ptr.
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Fixed-width terms are wasteful

e Most of the bytes in the Term column are wasted — we allot 20 bytes
for 1 letter terms.

— And we still can’t handle supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

e Written English averages ~4.5 characters/word.
e Average dictionary word in English: ~8 characters
e Short words dominate token counts but not type average.



Compressing the term list:
Dictionary-as-a-String

sStore dictionary as a (long) string of characters:
sPointer to next word shows end of current word
sHope to save up to 60% of dictionary space.

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. . ..

\ 4
Freq. Postings ptr. Term ptr. J

Total string length =
23 400K X 8B = 3.2MB

44 Pointers resolve 3.2M
126 positions: 10g,3.2M =

22bits = 3bytes




Space for dictionary as a string

e 4 bytes per term for Freq.

e 4 bytes per term for pointer to Postings. ]} EI)?t\é\;/?Z?rﬁll
e 3 bytes per term pointer | not 20. ’

e Avg. 8 bytes per term in term string
e 400K terms x 19 = 7.6 MB (against 11.2MB for fixed width)



Blocking

e Store pointers to every kth term string.

— Example below: k=4.

e Need to store term lengths (1 extra byte)

....1Systile9syzygetic8syzygial6syzygyllszaibelyite8szczecin9szomo. ...

T

Freq.  Postings ptr. Term ptr.

on 3 term lengths.

126 ) pointers.
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Net

e Example for block size k =4

e Where we used 3 bytes/pointer without blocking
— 3x4=12 bytes,
now we use 3 + 4 =7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?
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Dictionary search without blocking

e Assuming each
dictionary term
equally likely in
query (not really
so in practice!),
average number
of comparisons =
(14+2:2+4-3+4)/8
~2.6
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Dictionary search with blocking

:@ > DEN “;

e Binary search down to 4-term block;
—Then linear search through terms in block.

e Blocks of 4 (binary tree), avg. =
(1+2:-2+2-3+2:4+5)/8 = 3 compares



Front coding

e Front-coding:
— Sorted words commonly have long common prefix — store differences only
— (for last k-1 in a block of k)
Sautomata8automateSautomaticlOautomation

—>8automatj'_“ alde2dic30ion

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression.



RCV1 dictionary compression summary

Fixed width 11.2
Dictionary-as-String with pointers to every term 7.6
Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9



POSTINGS COMPRESSION



Postings compression

e The postings file is much larger than the dictionary, factor of at least
10.

e Key desideratum: store each posting compactly.
e A posting for our purposesis a docID.

e For Reuters (800,000 documents), we would use 32 bits per doclD
when using 4-byte integers.

e Alternatively, we can use log, 800,000 = 20 bits per doclID.
e Qur goal: use far fewer than 20 bits per doclID.



Postings: two conflicting forces

e A term like arachnocentric occurs in maybe one doc out of a million —
we would like to store this posting using log, 1M ~ 20 bits.

e Aterm like the occurs in virtually every doc, so 20 bits/posting is too
expensive.

— Prefer 0/1 bitmap vector in this case



Postings file entry

e We store the list of docs containing a term in increasing order of
doclD.
— computer: 33,47,154,159,202 ...

e Consequence: it suffices to store gaps.
— 33,14,107,5,43 ...
e Hope: most gaps can be encoded/stored with far fewer than 20 bits.
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Three postings entries

encoding postings list

THE doclDs 283042 283043 283044 283045
gaps 1 1
COMPUTER doclDs 283047 283154 283159 283202
gaps 107 43
ARACHNOCENTRIC doclDs 252000 500100

gaps 252000 248100
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Variable length encoding

e Aim:
— For arachnocentric, we will use ~20 bits/gap entry.

— For the, we will use ~1 bit/gap entry.

e |f the average gap for a termis G, we want to use ~log,G bits/gap
entry.

e Key challenge: encode every integer (gap) with about as few bits as
needed for that integer.

e This requires a variable length encoding

e Variable length codes achieve this by using short codes for small
numbers



Variable Byte (VB) codes

e Foragap value G, we want to use close to the fewest bytes needed to
hold log, G bits

e Begin with one byte to store G and dedicate 1 bitin it to be a
continuation bit ¢

e |f G<127, binary-encode it in the 7 available bits and set c =1

e Else encode G’s lower-order 7 bits and then use additional bytes to
encode the higher order bits using the same algorithm

e Atthe end set the continuation bit of the last byte to 1 (¢ =1) —and for
the other bytes ¢ = 0.




Example

gaps ) 214577
VB code 00000110 10000101 00001101
10111000 00001100
10110001

Postings stored as the byte concatenation
0000011010111000100007T0100001101000011001011000T

A\

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.




Other variable unit codes

e |nstead of bytes, we can also use a different “unit of alignment”: 32
bits (words), 16 bits, 4 bits (nibbles).

e Variable byte alignment wastes space if you have many small gaps —
nibbles do better in such cases.

e Variable byte codes:
— Used by many commercial/research systems

— Good low-tech blend of variable-length coding and sensitivity to computer
memory alignment matches (vs. bit-level codes, which we look at next).



Unary code

e Represent n as n 1s with a final 0.

e Unary code for 3is 1110.

e Unarycode for40is
11111111211112121112111221112111211121112111210
e Unary code for 80 is:

111111171171171171117117117117117171171121111717171717111717171711171717171117117117111
111171171711717111711171111110

e This doesn’t look promising, but....



Gamma codes

e We can compress better with bit-level codes
— The Gamma code is the best known of these.

e Representa gap G as a pair length and offset

e oOffsetis G in binary, with the leading bit cut off
— For example 13 - 1101 - 101

e Jength is the length of offset
— For 13 (offset 101), this is 3.

e We encode length with unary code: 1110.
e Gamma code of 13 is the concatenation of length and offset: 1110101



Gamma code examples
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Gamma code properties

e Gisencodedusing 2 |_Iog G| + 1 bits
— Length of offset is |_Iog G bits
— Length of length is |_Iog G+ 1 bits

e All gamma codes have an odd number of bits
e Almost within a factor of 2 of best possible, log, G

e Gamma code is uniquely prefix-decodable, like VB
e Gamma code is parameter-free



Gamma seldom used in practice

e Machines have word boundaries — 8, 16, 32, 64 bits
— Operations that cross word boundaries are slower

e Compressing and manipulating at the granularity of bits can be slow
e Variable byte encoding is aligned and thus potentially more efficient

e Regardless of efficiency, variable byte is conceptually simpler at little
additional space cost



RCV1 compression

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k=4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

postings, y—encoded 101.0



Index compression summary

e We can now create an index for highly efficient Boolean retrieval that
is very space efficient

e Only 4% of the total size of the collection
e Only 10-15% of the total size of the text in the collection
e However, we've ignored positional information

e Hence, space savings are less for indexes used in practice
— But techniques substantially the same.



Take-away Messages

e Binary Retrieval
— Binary Incidence Matrices
— Inverted Index
— Positional Inverted Index

e Scaling Index Construction

— Sort-based Indexing
e Naive in-memory inversion

e Blocked Sort-based indexing
— Single-pass in-memory indexing
— Distributed Indexing
— Dynamic Indexing

e Index Compression



Further Reading

e Chapters 1,2,5 of Manning-Raghavan-Schuetze book
— http://nlp.stanford.edu/IR-book/

e Chapter 3 (Web Search and Information Retrieval) from Mining the Web
— http://www.cse.iitb.ac.in/soumen/mining-the-web/

e Original publication on SPIMI: Heinz and Zobel (2003)

e F.Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.
— Variable byte codes
e V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151-166.
— Word aligned codes
e As We May Think -- Vannevar Bush
— http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
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