
Index Compression



Why compression for inverted indexes?

▪ Dictionary

▪ Make it small enough to keep in main memory

▪ Make it so small that you can keep some postings lists in 

main memory too

▪ Postings file(s)

▪ Reduce disk space needed

▪ Decrease time needed to read postings lists from disk

▪ Large search engines keep a significant part of the postings 

in memory.

▪ Compression lets you keep more in memory



Reuters RCV1 Dataset
Sec. 5.1
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DICTIONARY COMPRESSION

Sec. 5.2
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Why compress the dictionary?

• Search begins with the dictionary

• We want to keep it in memory

• Memory footprint competition with other applications

• Embedded/mobile devices may have very little memory

• Even if the dictionary isn’t in memory, we want it to be small for a fast 
search startup time

• So, compressing the dictionary is important
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Dictionary storage - first cut

• Array of fixed-width entries
– ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search

structure

20 bytes 4 bytes each
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Fixed-width terms are wasteful

• Most of the bytes in the Term column are wasted – we allot 20 bytes 
for 1 letter terms.

– And we still can’t handle supercalifragilisticexpialidocious or 
hydrochlorofluorocarbons.

• Written English averages ~4.5 characters/word.

• Average dictionary word in English: ~8 characters

• Short words dominate token counts but not type average.
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Compressing the term list: 

Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =

400K x 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

◼Store dictionary as a (long) string of characters:

◼Pointer to next word shows end of current word

◼Hope to save up to 60% of dictionary space.
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Space for dictionary as a string

• 4 bytes per term for Freq.

• 4 bytes per term for pointer to Postings.

• 3 bytes per term pointer

• Avg. 8 bytes per term in term string

• 400K terms x 19  7.6 MB (against 11.2MB for fixed width)

 Now avg. 11
 bytes/term,
 not 20.
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Blocking

• Store pointers to every kth term string.
– Example below: k=4.

• Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

 Save 9 bytes

 on 3

 pointers.

Lose 4 bytes on

term lengths.
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Net

• Example for block size k = 4

• Where we used 3 bytes/pointer without blocking
– 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?
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Dictionary search without blocking

• Assuming each 
dictionary term 
equally likely in 
query (not really 
so in practice!), 
average number 
of comparisons = 
(1+2∙2+4∙3+4)/8 
~2.6
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Dictionary search with blocking

• Binary search down to 4-term block;

–Then linear search through terms in block.

• Blocks of 4 (binary tree), avg. = 
(1+2∙2+2∙3+2∙4+5)/8 = 3 compares
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Front coding

• Front-coding:
– Sorted words commonly have long common prefix – store differences only

– (for last k-1 in a block of k)

8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat
Extra length

beyond automat.

Begins to resemble general string compression.
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RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9
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POSTINGS COMPRESSION

Sec. 5.3
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Postings compression

• The postings file is much larger than the dictionary, factor of at least 
10.

• Key desideratum: store each posting compactly.

• A posting for our purposes is a docID.

• For Reuters (800,000 documents), we would use 32 bits per docID 
when using 4-byte integers.

• Alternatively, we can use log2 800,000 ≈ 20 bits per docID.

• Our goal: use far fewer than 20 bits per docID.
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Postings: two conflicting forces

• A term like arachnocentric occurs in maybe one doc out of a million –
we would like to store this posting using log2 1M ~ 20 bits.

• A term like the occurs in virtually every doc, so 20 bits/posting is too 
expensive.
– Prefer 0/1 bitmap vector in this case 
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Postings file entry

• We store the list of docs containing a term in increasing order of 
docID.

– computer: 33,47,154,159,202 …

• Consequence: it suffices to store gaps.
– 33,14,107,5,43 …

• Hope: most gaps can be encoded/stored with far fewer than 20 bits.
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Three postings entries
Sec. 5.3
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Variable length encoding

• Aim:
– For arachnocentric, we will use ~20 bits/gap entry.

– For the, we will use ~1 bit/gap entry.

• If the average gap for a term is G, we want to use ~log2G bits/gap 
entry.

• Key challenge: encode every integer (gap) with about as few bits as 
needed for that integer.

• This requires a variable length encoding

• Variable length codes achieve this by using short codes for small 
numbers
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Variable Byte (VB) codes

• For a gap value G, we want to use close to the fewest bytes needed to 
hold log2 G bits

• Begin with one byte to store G and dedicate 1 bit in it to be a 
continuation bit c

• If G ≤127, binary-encode it in the 7 available bits and set c =1

• Else encode G’s lower-order 7 bits and then use additional bytes to 
encode the higher order bits using the same algorithm

• At the end set the continuation bit of the last byte to 1 (c =1) – and for 
the other bytes c = 0.
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Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 

10111000 

10000101 00001101 

00001100 

10110001

Postings stored as the byte concatenation

000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are

uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte.
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Other variable unit codes

• Instead of bytes, we can also use a different “unit of alignment”: 32 
bits (words), 16 bits, 4 bits (nibbles).

• Variable byte alignment wastes space if you have many small gaps –
nibbles do better in such cases.

• Variable byte codes:
– Used by many commercial/research systems

– Good low-tech blend of variable-length coding and sensitivity to computer 
memory alignment matches (vs. bit-level codes, which we look at next).
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Unary code

• Represent n as n 1s with a final 0.

• Unary code for 3 is 1110.

• Unary code for 40 is

11111111111111111111111111111111111111110 .

• Unary code for 80 is:

1111111111111111111111111111111111111111111111111111111111
11111111111111111111110

• This doesn’t look promising, but….
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Gamma codes

• We can compress better with bit-level codes
– The Gamma code is the best known of these.

• Represent a gap G as a pair length and offset

• offset is G in binary, with the leading bit cut off
– For example 13 → 1101 → 101

• length is the length of offset
– For 13 (offset 101), this is 3.

• We encode length with unary code: 1110.

• Gamma code of 13 is the concatenation of length and offset: 1110101
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Gamma code examples

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001
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Gamma code properties

• G is encoded using 2 log G + 1 bits
– Length of offset is log G bits

– Length of length is log G + 1 bits

• All gamma codes have an odd number of bits

• Almost within a factor of 2 of best possible, log2 G

• Gamma code is uniquely prefix-decodable, like VB

• Gamma code is parameter-free
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Gamma seldom used in practice

• Machines have word boundaries – 8, 16, 32, 64 bits
– Operations that cross word boundaries are slower

• Compressing and manipulating at the granularity of bits can be slow

• Variable byte encoding is aligned and thus potentially more efficient

• Regardless of efficiency, variable byte is conceptually simpler at little 
additional space cost
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RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0
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Index compression summary

• We can now create an index for highly efficient Boolean retrieval that 
is very space efficient

• Only 4% of the total size of the collection

• Only 10-15% of the total size of the text in the collection

• However, we’ve ignored positional information

• Hence, space savings are less for indexes used in practice
– But techniques substantially the same.

Sec. 5.3
31



Take-away Messages

• Binary Retrieval
– Binary Incidence Matrices

– Inverted Index

– Positional Inverted Index

• Scaling Index Construction

– Sort-based Indexing
• Naïve in-memory inversion

• Blocked Sort-based indexing

– Single-pass in-memory indexing

– Distributed Indexing

– Dynamic Indexing

• Index Compression



Further Reading

• Chapters 1,2,5 of Manning-Raghavan-Schuetze book
– http://nlp.stanford.edu/IR-book/

• Chapter 3 (Web Search and Information Retrieval) from Mining the Web
– http://www.cse.iitb.ac.in/soumen/mining-the-web/

• Original publication on SPIMI: Heinz and Zobel (2003)

• F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes 
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.

– Variable byte codes

• V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151–166.  

– Word aligned codes

• As We May Think -- Vannevar Bush
– http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

http://nlp.stanford.edu/IR-book/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

