
Index Compression

Why compression for inverted indexes?

▪ Dictionary

▪ Make it small enough to keep in main memory

▪ Make it so small that you can keep some postings lists in

main memory too

▪ Postings file(s)

▪ Reduce disk space needed

▪ Decrease time needed to read postings lists from disk

▪ Large search engines keep a significant part of the postings

in memory.

▪ Compression lets you keep more in memory

Reuters RCV1 Dataset
Sec. 5.1

3

DICTIONARY COMPRESSION

Sec. 5.2
4

Why compress the dictionary?

• Search begins with the dictionary

• We want to keep it in memory

• Memory footprint competition with other applications

• Embedded/mobile devices may have very little memory

• Even if the dictionary isn’t in memory, we want it to be small for a fast
search startup time

• So, compressing the dictionary is important

Sec. 5.2
5

Dictionary storage - first cut

• Array of fixed-width entries
– ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr.

a 656,265

aachen 65

…. ….

zulu 221

Dictionary search

structure

20 bytes 4 bytes each

Sec. 5.2
6

Fixed-width terms are wasteful

• Most of the bytes in the Term column are wasted – we allot 20 bytes
for 1 letter terms.

– And we still can’t handle supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

• Written English averages ~4.5 characters/word.

• Average dictionary word in English: ~8 characters

• Short words dominate token counts but not type average.

Sec. 5.2
7

Compressing the term list:

Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

Total string length =

400K x 8B = 3.2MB

Pointers resolve 3.2M

positions: log23.2M =

22bits = 3bytes

◼Store dictionary as a (long) string of characters:

◼Pointer to next word shows end of current word

◼Hope to save up to 60% of dictionary space.

Sec. 5.2
8

Space for dictionary as a string

• 4 bytes per term for Freq.

• 4 bytes per term for pointer to Postings.

• 3 bytes per term pointer

• Avg. 8 bytes per term in term string

• 400K terms x 19 7.6 MB (against 11.2MB for fixed width)

 Now avg. 11
 bytes/term,
 not 20.

Sec. 5.2
9

Blocking

• Store pointers to every kth term string.
– Example below: k=4.

• Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr.

33

29

44

126

7

 Save 9 bytes

 on 3

 pointers.

Lose 4 bytes on

term lengths.

Sec. 5.2
10

Net

• Example for block size k = 4

• Where we used 3 bytes/pointer without blocking
– 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2
11

Dictionary search without blocking

• Assuming each
dictionary term
equally likely in
query (not really
so in practice!),
average number
of comparisons =
(1+2∙2+4∙3+4)/8
~2.6

Sec. 5.2
12

Dictionary search with blocking

• Binary search down to 4-term block;

–Then linear search through terms in block.

• Blocks of 4 (binary tree), avg. =
(1+2∙2+2∙3+2∙4+5)/8 = 3 compares

Sec. 5.2
13

Front coding

• Front-coding:
– Sorted words commonly have long common prefix – store differences only

– (for last k-1 in a block of k)

8automata8automate9automatic10automation

→8automat*a1e2ic3ion

Encodes automat
Extra length

beyond automat.

Begins to resemble general string compression.

Sec. 5.2
14

RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
15

POSTINGS COMPRESSION

Sec. 5.3
16

Postings compression

• The postings file is much larger than the dictionary, factor of at least
10.

• Key desideratum: store each posting compactly.

• A posting for our purposes is a docID.

• For Reuters (800,000 documents), we would use 32 bits per docID
when using 4-byte integers.

• Alternatively, we can use log2 800,000 ≈ 20 bits per docID.

• Our goal: use far fewer than 20 bits per docID.

Sec. 5.3
17

Postings: two conflicting forces

• A term like arachnocentric occurs in maybe one doc out of a million –
we would like to store this posting using log2 1M ~ 20 bits.

• A term like the occurs in virtually every doc, so 20 bits/posting is too
expensive.
– Prefer 0/1 bitmap vector in this case

Sec. 5.3
18

Postings file entry

• We store the list of docs containing a term in increasing order of
docID.

– computer: 33,47,154,159,202 …

• Consequence: it suffices to store gaps.
– 33,14,107,5,43 …

• Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Sec. 5.3
19

Three postings entries
Sec. 5.3

20

Variable length encoding

• Aim:
– For arachnocentric, we will use ~20 bits/gap entry.

– For the, we will use ~1 bit/gap entry.

• If the average gap for a term is G, we want to use ~log2G bits/gap
entry.

• Key challenge: encode every integer (gap) with about as few bits as
needed for that integer.

• This requires a variable length encoding

• Variable length codes achieve this by using short codes for small
numbers

Sec. 5.3
21

Variable Byte (VB) codes

• For a gap value G, we want to use close to the fewest bytes needed to
hold log2 G bits

• Begin with one byte to store G and dedicate 1 bit in it to be a
continuation bit c

• If G ≤127, binary-encode it in the 7 available bits and set c =1

• Else encode G’s lower-order 7 bits and then use additional bytes to
encode the higher order bits using the same algorithm

• At the end set the continuation bit of the last byte to 1 (c =1) – and for
the other bytes c = 0.

Sec. 5.3
22

Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110

10111000

10000101 00001101

00001100

10110001

Postings stored as the byte concatenation

000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are

uniquely prefix-decodable.

For a small gap (5), VB

uses a whole byte.

Sec. 5.3
23

Other variable unit codes

• Instead of bytes, we can also use a different “unit of alignment”: 32
bits (words), 16 bits, 4 bits (nibbles).

• Variable byte alignment wastes space if you have many small gaps –
nibbles do better in such cases.

• Variable byte codes:
– Used by many commercial/research systems

– Good low-tech blend of variable-length coding and sensitivity to computer
memory alignment matches (vs. bit-level codes, which we look at next).

Sec. 5.3
24

Unary code

• Represent n as n 1s with a final 0.

• Unary code for 3 is 1110.

• Unary code for 40 is

110 .

• Unary code for 80 is:

11
11111111111111111111110

• This doesn’t look promising, but….

25

Gamma codes

• We can compress better with bit-level codes
– The Gamma code is the best known of these.

• Represent a gap G as a pair length and offset

• offset is G in binary, with the leading bit cut off
– For example 13 → 1101 → 101

• length is the length of offset
– For 13 (offset 101), this is 3.

• We encode length with unary code: 1110.

• Gamma code of 13 is the concatenation of length and offset: 1110101

Sec. 5.3
26

Gamma code examples

number length offset g-code

0 none

1 0 0

2 10 0 10,0

3 10 1 10,1

4 110 00 110,00

9 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

Sec. 5.3
27

Gamma code properties

• G is encoded using 2 log G + 1 bits
– Length of offset is log G bits

– Length of length is log G + 1 bits

• All gamma codes have an odd number of bits

• Almost within a factor of 2 of best possible, log2 G

• Gamma code is uniquely prefix-decodable, like VB

• Gamma code is parameter-free

Sec. 5.3
28

Gamma seldom used in practice

• Machines have word boundaries – 8, 16, 32, 64 bits
– Operations that cross word boundaries are slower

• Compressing and manipulating at the granularity of bits can be slow

• Variable byte encoding is aligned and thus potentially more efficient

• Regardless of efficiency, variable byte is conceptually simpler at little
additional space cost

Sec. 5.3
29

RCV1 compression

Data structure Size in MB

dictionary, fixed-width 11.2

dictionary, term pointers into string 7.6

with blocking, k = 4 7.1

with blocking & front coding 5.9

collection (text, xml markup etc) 3,600.0

collection (text) 960.0

Term-doc incidence matrix 40,000.0

postings, uncompressed (32-bit words) 400.0

postings, uncompressed (20 bits) 250.0

postings, variable byte encoded 116.0

postings, g-encoded 101.0

Sec. 5.3
30

Index compression summary

• We can now create an index for highly efficient Boolean retrieval that
is very space efficient

• Only 4% of the total size of the collection

• Only 10-15% of the total size of the text in the collection

• However, we’ve ignored positional information

• Hence, space savings are less for indexes used in practice
– But techniques substantially the same.

Sec. 5.3
31

Take-away Messages

• Binary Retrieval
– Binary Incidence Matrices

– Inverted Index

– Positional Inverted Index

• Scaling Index Construction

– Sort-based Indexing
• Naïve in-memory inversion

• Blocked Sort-based indexing

– Single-pass in-memory indexing

– Distributed Indexing

– Dynamic Indexing

• Index Compression

Further Reading

• Chapters 1,2,5 of Manning-Raghavan-Schuetze book
– http://nlp.stanford.edu/IR-book/

• Chapter 3 (Web Search and Information Retrieval) from Mining the Web
– http://www.cse.iitb.ac.in/soumen/mining-the-web/

• Original publication on SPIMI: Heinz and Zobel (2003)

• F. Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.

– Variable byte codes

• V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151–166.

– Word aligned codes

• As We May Think -- Vannevar Bush
– http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

http://nlp.stanford.edu/IR-book/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

