Index Compression

Why compression for inverted indexes?

= Dictionary
= Make it small enough to keep in main memory

= Make it so small that you can keep some postings lists in
main memory too

= Postings file(s)
= Reduce disk space needed
= Decrease time needed to read postings lists from disk

= Large search engines keep a significant part of the postings
IN memory.

Compression lets you keep more in memory

Reuters RCV1 Dataset

symbol
N

L

M

statistic

documents

avg. # tokens per doc
terms (= word types)

avg. # bytes per token

(incl. spaces/punct.)

avg. # bytes per token

(without spaces/punct.)

non-positional postings

value
800,000
200

~400,000
6

4.5

100,000,000

DICTIONARY COMPRESSION

Why compress the dictionary?

e Search begins with the dictionary

e We want to keep it in memory

e Memory footprint competition with other applications
e Embedded/mobile devices may have very little memory

e Even if the dictionary isn’tin memory, we want it to be small for a fast
search startup time

e So, compressing the dictionary is important

Dictionary storage - first cut

e Array of fixed-width entries
— ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms |Freq. Postings ptr.

a 656,265

/
/Q_ aachen |65

o~ I
—— Jzulu 221

= ol

Dictionary search | |20 bytes 4 bytes each
structure

Fixed-width terms are wasteful

e Most of the bytes in the Term column are wasted — we allot 20 bytes
for 1 letter terms.

— And we still can’t handle supercalifragilisticexpialidocious or
hydrochlorofluorocarbons.

e Written English averages ~4.5 characters/word.
e Average dictionary word in English: ~8 characters
e Short words dominate token counts but not type average.

Compressing the term list:
Dictionary-as-a-String

sStore dictionary as a (long) string of characters:
sPointer to next word shows end of current word
sHope to save up to 60% of dictionary space.

....systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo. . ..

\ 4
Freq. Postings ptr. Term ptr. J

Total string length =
23 400K X 8B = 3.2MB

44 Pointers resolve 3.2M
126 positions: 10g,3.2M =

22bits = 3bytes

Space for dictionary as a string

e 4 bytes per term for Freq.

e 4 bytes per term for pointer to Postings.]} EI)?t\é\;/?Z?rﬁll
e 3 bytes per term pointer | not 20. ’

e Avg. 8 bytes per term in term string
e 400K terms x 19 = 7.6 MB (against 11.2MB for fixed width)

Blocking

e Store pointers to every kth term string.

— Example below: k=4.

e Need to store term lengths (1 extra byte)

....1Systile9syzygetic8syzygial6syzygyllszaibelyite8szczecin9szomo. ...

T

Freq. Postings ptr. Term ptr.

on 3 term lengths.

126) pointers.

11

Net

e Example for block size k =4

e Where we used 3 bytes/pointer without blocking
— 3x4=12 bytes,
now we use 3 + 4 =7 bytes.

Shaved another ~0.5MB. This reduces the size of the
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

12

Dictionary search without blocking

e Assuming each
dictionary term
equally likely in
query (not really
so in practice!),
average number
of comparisons =
(14+2:2+4-3+4)/8
~2.6

13

Dictionary search with blocking

:@ > DEN “;

e Binary search down to 4-term block;
—Then linear search through terms in block.

e Blocks of 4 (binary tree), avg. =
(1+2:-2+2-3+2:4+5)/8 = 3 compares

Front coding

e Front-coding:
— Sorted words commonly have long common prefix — store differences only
— (for last k-1 in a block of k)
Sautomata8automateSautomaticlOautomation

—>8automatj'_“ alde2dic30ion

Extra length
beyond automat.

Encodes automat

Begins to resemble general string compression.

RCV1 dictionary compression summary

Fixed width 11.2
Dictionary-as-String with pointers to every term 7.6
Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

POSTINGS COMPRESSION

Postings compression

e The postings file is much larger than the dictionary, factor of at least
10.

e Key desideratum: store each posting compactly.
e A posting for our purposesis a docID.

e For Reuters (800,000 documents), we would use 32 bits per doclD
when using 4-byte integers.

e Alternatively, we can use log, 800,000 = 20 bits per doclID.
e Qur goal: use far fewer than 20 bits per doclID.

Postings: two conflicting forces

e A term like arachnocentric occurs in maybe one doc out of a million —
we would like to store this posting using log, 1M ~ 20 bits.

e Aterm like the occurs in virtually every doc, so 20 bits/posting is too
expensive.

— Prefer 0/1 bitmap vector in this case

Postings file entry

e We store the list of docs containing a term in increasing order of
doclD.
— computer: 33,47,154,159,202 ...

e Consequence: it suffices to store gaps.
— 33,14,107,5,43 ...
e Hope: most gaps can be encoded/stored with far fewer than 20 bits.

20

Three postings entries

encoding postings list

THE doclDs 283042 283043 283044 283045
gaps 1 1
COMPUTER doclDs 283047 283154 283159 283202
gaps 107 43
ARACHNOCENTRIC doclDs 252000 500100

gaps 252000 248100

21

Variable length encoding

e Aim:
— For arachnocentric, we will use ~20 bits/gap entry.

— For the, we will use ~1 bit/gap entry.

e |f the average gap for a termis G, we want to use ~log,G bits/gap
entry.

e Key challenge: encode every integer (gap) with about as few bits as
needed for that integer.

e This requires a variable length encoding

e Variable length codes achieve this by using short codes for small
numbers

Variable Byte (VB) codes

e Foragap value G, we want to use close to the fewest bytes needed to
hold log, G bits

e Begin with one byte to store G and dedicate 1 bitin it to be a
continuation bit ¢

e |f G<127, binary-encode it in the 7 available bits and set c =1

e Else encode G’s lower-order 7 bits and then use additional bytes to
encode the higher order bits using the same algorithm

e Atthe end set the continuation bit of the last byte to 1 (¢ =1) —and for
the other bytes ¢ = 0.

Example

gaps) 214577
VB code 00000110 10000101 00001101
10111000 00001100
10110001

Postings stored as the byte concatenation
0000011010111000100007T0100001101000011001011000T

A\

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Other variable unit codes

e |nstead of bytes, we can also use a different “unit of alignment”: 32
bits (words), 16 bits, 4 bits (nibbles).

e Variable byte alignment wastes space if you have many small gaps —
nibbles do better in such cases.

e Variable byte codes:
— Used by many commercial/research systems

— Good low-tech blend of variable-length coding and sensitivity to computer
memory alignment matches (vs. bit-level codes, which we look at next).

Unary code

e Represent n as n 1s with a final 0.

e Unary code for 3is 1110.

e Unarycode for40is
11111111211112121112111221112111211121112111210
e Unary code for 80 is:

111111171171171171117117117117117171171121111717171717111717171711171717171117117117111
111171171711717111711171111110

e This doesn’t look promising, but....

Gamma codes

e We can compress better with bit-level codes
— The Gamma code is the best known of these.

e Representa gap G as a pair length and offset

e oOffsetis G in binary, with the leading bit cut off
— For example 13 - 1101 - 101

e Jength is the length of offset
— For 13 (offset 101), this is 3.

e We encode length with unary code: 1110.
e Gamma code of 13 is the concatenation of length and offset: 1110101

Gamma code examples

© A WO N P+, O

13
24
511
1025

0

10

10

110

1110

1110

11110
1171111110
11111111110

0

1

00

001

101

1000
11111111
0000000001

none

0

10,0

10,1

110,00

1110,001

1110,101

11110,1000
1111117110,11111111
11111111110,0000000001

Gamma code properties

e Gisencodedusing 2 |_Iog G| + 1 bits
— Length of offset is |_Iog G bits
— Length of length is |_Iog G+ 1 bits

e All gamma codes have an odd number of bits
e Almost within a factor of 2 of best possible, log, G

e Gamma code is uniquely prefix-decodable, like VB
e Gamma code is parameter-free

Gamma seldom used in practice

e Machines have word boundaries — 8, 16, 32, 64 bits
— Operations that cross word boundaries are slower

e Compressing and manipulating at the granularity of bits can be slow
e Variable byte encoding is aligned and thus potentially more efficient

e Regardless of efficiency, variable byte is conceptually simpler at little
additional space cost

RCV1 compression

dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k=4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0

postings, y—encoded 101.0

Index compression summary

e We can now create an index for highly efficient Boolean retrieval that
is very space efficient

e Only 4% of the total size of the collection
e Only 10-15% of the total size of the text in the collection
e However, we've ignored positional information

e Hence, space savings are less for indexes used in practice
— But techniques substantially the same.

Take-away Messages

e Binary Retrieval
— Binary Incidence Matrices
— Inverted Index
— Positional Inverted Index

e Scaling Index Construction

— Sort-based Indexing
e Naive in-memory inversion

e Blocked Sort-based indexing
— Single-pass in-memory indexing
— Distributed Indexing
— Dynamic Indexing

e Index Compression

Further Reading

e Chapters 1,2,5 of Manning-Raghavan-Schuetze book
— http://nlp.stanford.edu/IR-book/

e Chapter 3 (Web Search and Information Retrieval) from Mining the Web
— http://www.cse.iitb.ac.in/soumen/mining-the-web/

e Original publication on SPIMI: Heinz and Zobel (2003)

e F.Scholer, H.E. Williams and J. Zobel. 2002. Compression of Inverted Indexes
For Fast Query Evaluation. Proc. ACM-SIGIR 2002.
— Variable byte codes
e V. N. Anh and A. Moffat. 2005. Inverted Index Compression Using Word-
Aligned Binary Codes. Information Retrieval 8: 151-166.
— Word aligned codes
e As We May Think -- Vannevar Bush
— http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

http://nlp.stanford.edu/IR-book/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.cse.iitb.ac.in/soumen/mining-the-web/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/

