
CSE474: Information Retrieval and Extraction
Mini-Project (Phase 2): Search Engine for Wikipedia

List of allowed external libraries for Python

PyStemmer

NLTK (PorterStemmer, SnowballStemmer, WordNetLemmatizer)

Desirable Features:

● Support for Field Queries - Fields include Title, Infobox, Body, Category, Links, and References of a
Wikipedia page.

● Index size should be less than one-fourth of the dump size (you can experiment with different index
compression techniques if you want).

● Search results should be displayed within 0 - 5 seconds depending upon query type/length
● Check out the relevant sections from Chapters 4, 5.2, 5.3, 6, 7, 11.4.3 in the ‘Intro to IR’ book.

One important thing to note is the trade-off between index size and search time - a highly compressed index
might increase the search time.

Evaluation Criteria:
Evaluation for phase 2 will be on following two criteria:

● Inverted index size
● Search time and relevance
● Viva on your implementation

Submission Format:
You have to submit a zipped folder named as your roll_number having 4 files at least

1. Code for index creation
2. Code for search
3. stats.txt​ - A text file containing these stats on separate lines:

● index size in GB (for e.g. 10 GB)
● number of files in which inverted_index is split (for e.g. 26)
● number of tokens in inverted_index (for e.g. 1000000)

4. readme.txt​ - A text file mentioning any convention, for e.g. if your index creation code is split into 3 files,
please mention those files here.

This is to make sure that your code for index creation and search doesn’t change substantially by the
date of evaluation.

Query Search:
Given a query string you would have to return the ​page_id, page_title​ of top K results. Unlike phase 1, this
time, you will run the code on your system as inverted_index is there. The only difference is, we will provide
these search queries via a ​queries.txt​ file during your evaluation and you would have to write the output in a
queries_op.txt​ file.

$python search.py queries.txt

Input:
queries.txt​ file, it contains each query on a separate line. Each line is of the format ​K, QS​ where K is the
number of results to return and QS is the query string. ​1<=K<=100

Sample ​queries.txt

3, t:World Cup i:2019 c:Cricket
2, t:the two towers i:1954

Output:
queries_op.txt​ file. It should contain K ​page_id, page_title​ on each line for a given query. After K lines,
another line will contain two times in seconds - Total time for K queries, Average time per query.
Results for different queries will be separated by a new line.

page_id -​ This is the original page id of doc as per the .xml file. In case, you have used your own ID
scheme, you can print that instead.

page_title:​ This is the original page title of the doc as per the .xml file. Apart from lowercasing, no other
preprocessing should be done on this.

Sample ​queries_op.txt​:

7239, cricket world cup
4971952, 2019 cricket world cup
57253320, 2019 cricket world cup final
10, 3.33

63750, the two towers
173944, lord of the rings: the two towers
8, 4

